By-products as an amendment of a mine soileffects on microbial biomass determined using phospholipid fatty acids

  1. Santás-Miguel, Vanesa
  2. Cutillas-Barreiro, Laura
  3. Nóvoa-Muñoz, Juan Carlos
  4. Arias-Estévez, Manuel
  5. Díaz-Raviña, Montserrat
  6. Fernández-Sanjurjo, María José
  7. Álvarez-Rodríguez, Esperanza
  8. Núñez-Delgado, Avelino
  9. Fernández-Calviño, David
Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Ano de publicación: 2018

Volume: 8

Número: 1

Páxinas: 1-11

Tipo: Artigo

DOI: 10.3232/SJSS.2018.V8.N1.01 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Spanish Journal of Soil Science: SJSS

Resumo

En el presente trabajo se estudió el efecto de dos subproductos (corteza de pino y concha de mejillón triturada) sobre la biomasa y estructura microbiana de un suelo procedente de una escombrera localizada en una mina de cobre. En un experimento realizado en laboratorio fueron añadidas al suelo diferentes dosis (0, 12, 24, 48, 96 and 192 Mg ha-1) de corteza de pino, concha de mejillón triturada y mezclas de ambos subproductos. Las muestras de suelo enmendado fueron incubadas durante un año al 60% de la capacidad de campo, y posteriormente 33 ácidos grasos de los fosfolípidos (PLFAs) fueron extraídos de estas muestras y cuantificados. La concentración de PLFAs fue utilizada para realizar distintas estimaciones de la biomasa microbiana: biomasa total, biomasa bacteriana, biomasa fúngica, biomasa de bacterias gram + y biomasa de bacterias gram -. La adición de concha de mejillón triturada no tuvo efectos significativos sobre la biomasa total ni sobre la biomasa bacteriana o fúngica. Sin embargo, la adición de corteza de pino al suelo incrementó la biomasa total del suelo (hasta un 40%), debido mayormente al incremento de la biomasa fúngica (se incrementó un 1600%). Tampoco se observaron efectos sinérgicos cuando el suelo fue enmendado con una mezcla de corteza de pino y concha de mejillón triturada. Los mayores cambios en la estructura de las comunidades microbianas fueron debidos a la adición de corteza de pino al suelo, y fueron además debidas a cambios en las comunidades fúngicas. Nuestros resultados sugieren que la biomasa microbiana del suelo de mina está mayormente limitada por la concentración de materia orgánica y, por tanto, deben ser priorizadas prácticas de manejo que contribuyan a incrementarla para la rehabilitación de este tipo de suelos.

Referencias bibliográficas

  • Abad-Valle P, Iglesias-Jiménez E, Álvarez-Ayuso E. 2017. A comparative study on the influence of different organic amendments on trace element mobility and microbial functionality of a polluted mine soil. J Environ Manage. 188: 287-296.
  • Aciego-Pietri JC, Brookes PC. 2009. Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biol Biochem. 41:1396-1405.
  • Álvarez E, Fernández-Marcos ML, Vaamonde C, Fernández-Sanjurjo MJ. 2003. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci Total Environ. 313:185-197.
  • Arias-Estévez M, López-Periago E, Nóvoa-Muñoz JC, Torrado-Agrasar A, Simal Gándara J. 2007. Treatment of an acid soil with bentonite used for wine fining: effects on soil properties and the growth of Lolium multiflorum. J Agric Food Chem. 55:7541-7546.
  • Barreiro A, Martín A, Carballas T, Díaz-Raviña M. 2010. Response of soil microbial communities to fire and fire-fighting chemicals. Sci Total Environ. 408:6172-6178.
  • Calvo de Anta R, Luís Calvo E, Casás Sabarís F, Galiñanes Costa JM, Matilla Mosquera N, Macías Vázquez F, Camps Arbestain M, Vázquez García N. 2015. Soil organic carbon in northern Spain (Galicia, Asturias, Cantabria and País Vasco). Span J Soil Sci. 5:41-53.
  • Cutillas-Barreiro L, Ansias-Manso L, Fernández-Calviño D, Arias-Estévez M, Nóvoa-Muñoz JC, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A. 2014. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: batchtype and stirred flow chamber experiments. J Environ Manag. 144:258-264.
  • Dangi SR, Stahl PD, Wick AF, Ingram LJ, Buyer JS. 2012. Soil microbial community recovery in reclaimed soils on a surface coal mine site. Soil Sci Soc Am J. 76:915-924.
  • Farouq R, Yousef NS. 2015. Equilibrium and kinetics studies of adsorption of copper (II) ions on natural biosorbent. International J Chem Eng Appl. 6:319-324.
  • Fernández-Calviño D, Cutillas-Barreiro L, Nóvoa-Muñoz JC, Díaz-Raviña M, Fernández-Sanjurjo MJ, Álvarez-Rodriguez E, Núñez-Delgado A, Arias-Estévez M, Rousk, J. Using pine bark/mussel shell amendments to reclaim microbial functions in a Cu polluted mine soil. (Submitted).
  • Fernández-Calviño D, Cutillas-Barreiro L, Paradelo-Núñez R, Nóvoa-Muñoz JC, Fernández-Sanjurjo MJ, Álvarez-Rodriguez E, Núñez-Delgado A, Arias-Estévez M. 2017. Heavy metals fractionation and desorption in a pine bark amended mine soil. J Environ Manage. 192:79-88.
  • Fernández-Calviño D, Garrido-Rodríguez B, Arias-Estévez M, Díaz-Raviña M, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ, Nuñez-Delgado A. 2015. Effect of crushed mussel shell addition on bacterial growth in acid polluted soils. Appl Soil Ecol. 85:65-68.
  • Fernández-Calviño D, Martín A, Arias-Estévez M, Bååth E, Díaz-Raviña M. 2010. Microbial community structure of vineyard soils with different pH and copper content. Appl Soil Ecol. 46:276-282.
  • Fernández-Calviño D, Pérez-Armada L, Cutillas-Barreiro L, Paradelo-Núñez R, Núñez-Delgado A, Fernández-Sanjurjo MJ, Álvarez-Rodriguez E, Arias-Estévez M. 2016. Changes in Cd, Cu, Ni, Pb and Zn fractionation and liberation due to mussel shell amendment on a mine soil. Land Degrad Develop. 27:1276-1285.
  • Fernández-Pazos MT, Garrido-Rodriguez B, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez E. 2013. Cr(VI) adsorption and desorption on soils and bio-sorbents. Water Air Soil Pollut. 224:1366.
  • IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.
  • Frostegård Å, Bååth E. 1996. The use of phospholipids fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59-65.
  • Frostegård Å, Bååth E, Tunlid A. 1993. Shifts in the structure of soil microbial communities in limed soils as revealed by phospholipid fatty acid analysis. Soil Biol Biochem. 25:723-730.
  • Garrido-Rodríguez B, Fernández-Calviño D, Nóvoa Muñoz JC, Arias-Estévez M, Díaz-Raviña M, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ, Núñez-Delgado A. 2013. pH-dependent copper release in acid soils treated with crushed mussel shell. Int J Environ Sci Technol. 10:983-994.
  • Giller KE, Witter E, Mcgrath SP. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem. 30:1389-1414.
  • Khan M, Scullion J. 2002. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl Soil Ecol. 20:145-155.
  • Masto RE, Sheik S, Nehru G, Selvi VA, George J, Ram LC. 2015. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth 6: 811-821.
  • Meisner A, Bååth E, Rousk J. 2013. Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol Biochem. 66:188-192.
  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. 2003. Microbial diversity and soil functions. Eur J Soil Sci. 54:655-670.
  • Nguyen TAH, Ngo HH, Guo WS, Zhang J, Liang S, Yue QI, Li Q, Nguyen TV. 2013. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour Technol. 148:574-585.
  • Nunes I, Jacquiod S, Brejnrod A, Holm PE, Johansen A, Brandt KK, Priemé A, Sørensen SJ. 2016. Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiol Ecol. 92:fiw175.
  • Paradelo R, Barral MT. 2017. Availability and fractionation of Cu, Pb and Zn in an acid soil from Galicia (NW Spain) amended with municipal solid waste compost. Span J Soil Sci. 7:31-39.
  • Perlatti F, Osório-Ferreira T, Espíndola-Romero R, Gomes-Costa MC, Otero XL. 2015. Copper accumulation and changes in soil physical-chemical properties promoted by native plants in an abandoned mine site in northeastern Brazil: implications for restoration of mine sites. Ecol Eng. 82:103-111.
  • Rodríguez-Salgado I, Pérez-Rodríguez P, Gómez-Armesto A, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Calviño D. 2016. Cu retention in an acid soil amended with perlite winery waste. Environ Sci Pollut Res. 23:3789-3798.
  • Rousk J, Aldén-Demoling L, Bahr A, Bååth E. 2008. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol Ecol. 63:350-358.
  • Rousk J, Brookes PC, Bååth E. 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol. 75:1589-1596.
  • Rousk J, Brookes PC, Bååth E. 2010. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol Biochem. 42:516-520.
  • Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y. 2016. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ. 556:89-97.
  • Zelles L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29:111-129.
  • Zornoza R, Acosta JA, Martínez-Martínez S, Faz A, Bååth E. 2015. Main factors controlling microbial community structure and function after reclamation of a tailing pond with aided phytostabilization. Geoderma 245-246:1-10.
  • Zornoza R, Acosta JA, Faz A, Bååth E. 2016. Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation. Geoderma 272:64-72.