Energías renovables y cambio climático

  1. Labandeira Villot, Xavier
  2. Linares Llamas, Pedro
  3. Würzburg, Klaas
Revista:
Cuadernos económicos de ICE

ISSN: 0210-2633

Ano de publicación: 2012

Número: 83

Páxinas: 37-60

Tipo: Artigo

DOI: 10.32796/CICE.2012.83.6032 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Cuadernos económicos de ICE

Resumo

Cambio climático y energía son dos caras de la misma moneda. Por ello, para afrontar con éxito el problema del cambio climático es necesario un cambio importante en los sistemas energéticos actuales. Sin embargo, la mitigación de las emisiones de gases de efecto invernadero ha sido limitada hasta el momento, en buena medida por las características del cambio climático: externalidad global y dinámica sujeta a numerosas incertidumbres. Independientemente de una mayor o menor cooperación internacional, no obstante, hay razones (no solo climáticas) para actuaciones unilaterales y, dentro de éstas, las energías renovables han de jugar un papel fundamental. En este trabajo resumimos las principales conclusiones de los estudios prospectivos sobre el protagonismo de las fuentes renovables en los sistemas energéticos futuros. También subrayamos la importancia de una adecuada definición de políticas para que las energías renovables contribuyan de forma significativa a la mitigación de gases de efecto invernadero.

Referencias bibliográficas

  • BORENSTEIN, s. (2008): The market value and cost of solar photovoltaic electricity production, Center for the study of Energy Markets, Working Paper 176.
  • BORENSTEIN, s. (2011): The private and public economics of renewable electricity generation WP 221, Energy institute at Haas.
  • COMISIÓN EUROPEA (2010): Europe 2020. A European strategy for smart, sustain-able and inclusive growth, bruselas.
  • COMISIÓN EUROPEA (2011): A Roadmap for moving to a competitive low carbon economy in 2050, bruselas.
  • COR Y, K. Y SCHWABE, P. (2009): Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables, National Renewable Energy Laboratory tech-nical Report NREL/tP-6A2-46671.
  • DELARUE, E.; MEEUS, L.; BELMANS, R.; D’HAESELEER, W. Y GLACHANT, J. M. (2011): Decarbonizing the European electric power sector by 2050: A tale of three studies. WP RsCAs, EUi 2011/03.
  • DRUCKMAN, A. y JACKSON, t. (2009): «the carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multiregional input-output model», Ecological Economics, 68, pp. 2066-2077.
  • DU, Y. Y PARSONS, J. E. (2009): Update on the Cost of Nuclear Power, Mit Center for Energy and Environmental Policy Research Paper 09-004.
  • ECONOMICS FOR ENERGY (2011): Potencial económico de reducción de la demanda de energía en España. informe anual, vigo.
  • EIA (2011): Levelized Costs in the Annual Energy Outlook 2011, Energy information Agency, Washington D.C.
  • ELECTRIC POWER RESEARCH INSTITUTE (2009): Program on Technology Innovation: Integrated Generation Technology Options.
  • FOUQUET, R. (2010): «the slow search for solutions: Lessons from historical energy transitions by sector and service», Energy Policy, 38, pp. 6586-6596.
  • FTHENAKIS, V.; MASON, J. Y ZWEIBEL, K. (2009): «the technical, Geographical, and Economic Feasibility for solar Energy to supply the Energy Needs of the Us», Energy Policy, 37 (2), pp. 387-399.
  • HEROLD, J. Y VON HIRSCHAUSEN, C. (2010): Carbon capture, transport and storage in Europe: A problematic energy bridge to nowhere? Nota di Lavoro 156, FEEM.
  • IEA (2008): Deploying Renewables: Principles for Effective Policies, Agencia Internacional de la Energía, París.
  • IEA (2010): Energy Technology Perspectives. Agencia internacional de la Energía, París.
  • IEA (2011): World Energy Outlook. Agencia internacional de la Energía, París.
  • IPCC (2007): Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and iii to the Fourth Assessment Report especial del Grupo intergubernamental de Cambio Climático, Ginebra.
  • IPCC (2011): Renewable Energy Sources and Climate Change Mitigation. informe especial del Grupo intergubernamental de Cambio Climático, Ginebra.
  • IPTS (2009): Economic Assessment of Post-2012 Global Climate Policies. Institute for Prospective and Technological Analysis. Bruselas.
  • JAMASB, T. Y KÖHLER, J. (2007): «Learning curves for energy technology: a critical assessment», en M. Grubb, t. Jamasb y M. G. Pollitt (2008), Delivering a Low Carbon Electricity System: Technologies, Economics and Policy. Cambridge University Press, Cambridge.
  • KEMFERT, C. Y DIEKMANN, J. (2009): Emissions Trading and Promotion of Renewable Energy-We Need Both, German institute for Economic Research, Weekly Report No. 14/2009 (5).
  • KLEIN, J. (2010): Comparative Costs of California Central Station Electricity Generation Technologies, California Energy Commission CEC-200-2009-017-sD.
  • LAZARD (2008): Lazard Cost of Energy Analysis, version 2.0, Lazard Ltd., Nueva york.
  • LINARES, P. Y LABANDEIRA, X. (2010): «Energy efficiency. Economics and poli-cy», Journal of Economic Surveys, 24, pp. 573-592.
  • MEEUS, L.; AZEVEDO, I.; MARCANTONINI, C.; GLACHANT, J. M. Y HAFNER, M. (2011): EU 2050 low-carbon energy future: Visions and strategies. WP RsCAs 2011/11, EUi.
  • MOSELLE, b. (2011): Climate Change Policy. Time for Plan B. Policy Exchange, Londres.
  • NEMET, F. G. Y BAKER, E. (2009): «Demand subsidies versus R&D: Comparing the Uncertain impacts of Policy on a Pre-commercial Low-carbon Energy technology», Energy Journal, 30 (4), pp. 49-80.
  • NEWELL, R. G. (2010): «The role of markets and policies in delivering innovation for climate change mitigation», Oxford Review of Economic Policy, 26, pp. 253-269.
  • NEWELL, R. G. Y FISCHER, C. (2008): «Environmental and technology policies for climate mitigation», Journal of Environmental Economics and Management, 55,p. 142-162.
  • NORDHAUS, W. (2010): «Designing a friendly space for technological change to slow global warming», Energy Economics, 33, pp. 665-673.
  • OLMSTEAD, S. M. Y ST AVINS, R. N. (2010): Three key elements of post-2012 International Climate Policy Architecture. Nota di Lavoro 97a, FEEM.
  • OWEN, A. D. (2006): «Renewable energy: Externality costs as market barriers»,Energy Policy, 34,(5), pp. 632-642.
  • PRINS, G.; GALIANA, I.; GREEN, C.; GRUNDMANN, R.; KORHOLA, A.; LAIRD, F.; NORDHAUS, T.; PIELKE, R.; RAYNER, S.; SAREWITZ, D.; SHELLENBERG-ER, M.; STEHR, N. Y TEZUKO, H. (2010): A new direction for climate policy after the crash of 2009 (Hartwell Paper). Institute for Science, Innovation and Society, Oxford.
  • TIROLE, J. (2009): «Some economics of global warming», Rivista di Politica Economica, 11/12, pp. 9-41.
  • UNION OF CONCERNED SCIENTISTS (2011): A Risky Proposition Appendix A: Key Assumptions for Levelized Cost of Electricity Ranges. Report, Cambridge MA