Bidireccionalidad y Eficiencia en el Transporte de Datos de Teleoperación a Través de Redes IP

  1. Díaz-Cacho Medina, Miguel
  2. Barreiro, José M.
  3. García Rivera, Matías
Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Ano de publicación: 2010

Volume: 7

Número: 2

Páxinas: 99-110

Tipo: Artigo

DOI: 10.1016/S1697-7912(10)70030-3 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumo

Este artículo propone un nuevo esquema de protocolo de transporte que aprovecha las particularidades de flujos de datos de teleoperación a través de Internet. Se presenta como resultado de un análisis global de los datos de la teleoperación bilateral para ser encapsulados en paquetes compatibles IP. Distingue entre tráfico multimedia, tráfico supermedia y tráfico de control, y ofrece la posibilidad de sistemas de control del flujo que sean amigables con el tráfico TCP (TCPFriendly) mayoritario en Internet. Se presentan resultados de simulación y comparaciones con otros esquemas, utilizando el sistema de control del flujo trinomial, pero son posibles otros sistemas de control. El esquema propuesto aprovecha la bidireccionalidad del lazo de control y el pequeño tamaño de los datos de teleoperación para la mejora de la eficiencia de la transmisión manteniendo la misma información a enviar, y pretende servir de aportación por parte de la red, a los esfuerzos de modelar la estabilidad de sistemas de teleoperación a través de redes con retardos variables mediante las actuaciones sobre los controladores Maestro y Esclavo. En el artículo se presenta una cabecera de transporte adecuada a los sistemas de control del flujo basados en ecuación (Equation-Based Flow Control), manteniendo la eficiencia, y establece unos usos de determinados campos de la cabecera actual de Internet.

Información de financiamento

El aprovechamiento de la bidireccionalidad se basa en la in-serción de los datos de estados de red en el flujo de datos de teleoperación inverso, como puede apreciarse en la figura 2. Cuantitativamente, ello implica una disminución del caudal total necesario para el envío de la misma información, man-teniéndose o mejorándose las características de estabilidad y pasividad del sistema teleoperado, al disminuir la carga sobre la red.

Financiadores

Referencias bibliográficas

  • Andersen, David, Hari Balakrishnan, Frans Kaashoek and Robert Morris (2001). Resilient overlay networks. SIGOPS Oper. Syst. Rev. 35(5), 131–145.
  • Anderson, R.J. and M.W. Spong (1988). Bilateral control of teleoperators with time delay. Systems, Man, and Cybernetics, 1988. Proceedings of the 1988 IEEE International Conference on 1, 131–138.
  • Arkko, J. and S. Bradner (2008). IANA Allocation Guidelines for the Protocol Field. RFC 5237 (Best Current Practice).
  • Berestesky, P., N. Chopra and M.W. Spong (2004). Discrete time passivity in bilateral teleoperation over the internet. Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on 5, 4557–4564 Vol.5.
  • Cen, Zhiwei, Matt W. Mutka and Danyu Zhu (2005). An overlay network transport service for teleoperation systems. Technical report.
  • Decotignie, J.-D. (2005). Ethernet-based real-time and industrial communications. Proceedings of the IEEE 93(6), 1102– 1117.
  • Diaz-Cacho, M., A. Fernandez and A. Barreiro (2008). Sistema de teleoperacion colaborativa grua-camara con retorno de estado.
  • Duan, Zhenhai, Zhi-Li Zhang and Y.T. Hou (2003). Service overlay networks: Slas, qos, and bandwidth provisioning. Networking, IEEE/ACM Transactions on 11(6), 870–883.
  • Emanuel Slawinski, Jose F. Postigo and Vicente Mut (2007). Bilateral teleoperation through the internet. Robot. Auton. Syst. 55(3), 205–215.
  • Emanuel Slawinski, José F. Postigo y Vicente Mut (2006). Experiencias en teleoperación bilateral de robots. Revista iberoamericana de automática e informática industrial (RIAI) 3(1), 29–38.
  • Felser, M. (2005). Real time ethernet. industry prospective. Proceedings of the IEEE 93(6), 1118–1129.
  • Fernandez Villaverde, A., C. Raimundez Alvarez and A. Barreiro Bias (2007). Digital passive teleoperation of a gantry crane. Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on pp. 56–61.
  • Floyd, S. and E. Kohler (2007). TCP Friendly Rate Control (TFRC): The Small-Packet (SP) Variant. RFC 4828 (Experimental).
  • Floyd, S. and J. Kempf (2004). IAB Concerns Regarding Congestion Control for Voice Traffic in the Internet. RFC 3714 (Informational).
  • Floyd, S. and K. Fall (1999). Promoting the use of end-to-end congestion control in the internet. Networking, IEEE/ACM Transactions on 7(4), 458–472.
  • Floyd, Sally, Mark Handley, Jitendra Padhye and J¨org Widmer (2000). Equation-based congestion control for unicast applications. SIGCOMM Comput. Commun. Rev. 30(4), 43–56.
  • García-Rivera, Matías and Antonio Barreiro (2007). Analysis of networked control systems with drops and variable delays. Automatica 43(12), 2054–2059.
  • Group, Audio-Video Transport Working, H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson (1996). RTP: A Transport Protocol for Real-Time Applications. RFC 1889 (Proposed Standard). Obsoleted by RFC 3550.
  • Handley, M., S. Floyd, J. Padhye and J. Widmer (2003). TCP Friendly Rate Control (TFRC): Protocol Specification. RFC 3448 (Proposed Standard). Obsoleted by RFC 5348.
  • Hirche, S., P. Hinterseer, E. Steinbach and M. Buss (2005). Towards deadband control in networked teleoperation systems. In: In: Proceedings of the 16.th IFAC World.
  • Jacobson, V. (1995). Congestion avoidance and control. SIGCOMM Comput. Commun. Rev. 25(1), 157–187.
  • Jannotti, John, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek and Jr. James W. O’Toole (2000). Overcast: reliable multicasting with on overlay network. In: OSDI’00: Proceedings of the 4th conference on Symposium on Operating System Design & Implementation. USENIX Association. Berkeley, CA, USA. pp. 14–14.
  • Kohler, E., M. Handley and S. Floyd (2006a). Datagram Congestion Control Protocol (DCCP). RFC 4340 (Proposed Standard).
  • Kohler, Eddie, Mark Handley and Sally Floyd (2006b). Designing dccp: congestion control without reliability. In: SIGCOMM ’06: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications. ACM. New York, NY, USA. pp. 27–38.
  • Kopetz, Hermann (1997). Real-Time Systems: Design Principles for Distributed Embedded Applications (The International Series in Engineering and Computer Science). Springer.
  • Li, Zhi and P. Mohapatra (2004). Qron: Qos-aware routing in overlay networks. Selected Areas in Communications, IEEE Journal on 22(1), 29–40.
  • Lian, Feng-Li, J. Moyne and D. Tilbury (2002). Network design consideration for distributed control systems. Control Systems Technology, IEEE Transactions on 10(2), 297–307.
  • Liu, Peter Xiaoping, Max Q.-H. Meng and Simon X. Yang (2003a). Data communications for internet robots. Auton. Robots 15(3), 213–223.
  • Liu, Peter Xiaoping, M.Q.-H. Meng, Jason Gu, S.X. Yang and Chao Hu (2003b). Control and data transmission for internet robots. Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE International Conference on 2, 1659–1664 vol.2.
  • Liu, P.X., M. Meng, Xiufen Ye and J. Gu (2002). An udpbased protocol for internet robots. Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on 1, 59–65 vol.1.
  • Liu, P.X., M.Q.-H. Meng, P.R. Liu and S.X. Yang (2005). An end-to-end transmission architecture for the remote control of robots over ip networks. Mechatronics, IEEE/ASME Transactions on 10(5), 560–570.
  • Munir, S. and W.J. Book (2001). Internet based teleoperation using wave variables with prediction. Advanced Intelligent Mechatronics, 2001. Proceedings. 2001 IEEE/ASME International Conference on 1, 43–50 vol.1.
  • Niemeyer, G. and J.-J.E. Slotline (1991). Stable adaptive teleoperation. Oceanic Engineering, IEEE Journal of 16(1), 152– 162.
  • Ping, Li, Lu Wenjuan and Sun Zengqi (2005). Transport layer protocol reconfiguration for network-based robot control system. Networking, Sensing and Control, 2005. Proceedings. 2005 IEEE pp. 1049–1053.
  • Postel, J. (1981). Internet Protocol. RFC 791 (Standard). Updated by RFC 1349.
  • Rejaie, R., M. Handley and D. Estrin (1999). Rap: An end-toend rate-based congestion control mechanism for realtime streams in the internet. INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE 3, 1337–1345 vol.3.
  • Rhee, Injong, Volkan Ozdemir and Yung Yi (2000). Tear: Tcp emulation at receivers - flow control for multimedia streaming. Technical report.
  • Schiffer, V. (2001). The cip family of fieldbus protocols and its newest member ethernet/ip. Emerging Technologies and Factory Automation, 2001. Proceedings. 2001 8th IEEE International Conference on pp. 377–384 vol.1.
  • Schulzrinne, H., S. Casner, R. Frederick and V. Jacobson (2003). RTP: A Transport Protocol for Real-Time Applications. RFC 3550 (Standard).
  • Subramanian, Lakshminarayanan, Ion Stoica, Hari Balakrishnan and Randy H. Katz (2004). Overqos: an overlay based architecture for enhancing internet qos. In: NSDI’04: Proceedings of the 1st conference on Symposium on Networked Systems Design and Implementation. USENIX Association. Berkeley, CA, USA. pp. 6–6.
  • Tipsuwan, Y. and Mo-Yuen Chow (2004). Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation - part i: networked control. Industrial Electronics, IEEE Transactions on 51(6), 1218– 1227.
  • Uchimura, Y. and T. Yakoh (2004). Bilateral robot system on the real-time network structure. Industrial Electronics, IEEE Transactions on 51(5), 940–946.
  • Wirz, R., R. Marin, J.M. Claver, J. Fernandez and E. Cervera (2007). Transport protocols for remote programming of network robots within the context of telelaboratories for education: A comparative analysis. Computer Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th International Conference on pp. 1315–1320.
  • Wirz, Raul, Manuel Ferre, Raúl Marín, Jorge Barrio, José M. Claver and Javier Ortego (2008a). Efficient transport protocol for networked haptics applications. In: EuroHaptics. pp. 3–12.
  • Wirz, Raul, Raul Marín, José M. Claver, Manuel Ferre, Rafael Aracil and Josep Fernández (2008b). End-to-end congestion control protocols for remote programming of robots, using heterogeneous networks: A comparative analysis. Robotics and Autonomous Systems 56(10), 865 – 874. Network Robot Systems.
  • Yutaka Uchimura, Nobuyuki Yamasaki and Kouhei Ohnishi (2005). Prioritized data transfer for a bilateral robot control via real-time network system. IEEJ Transactions on Industry Applications 125(2), 199–204.
  • Zhou, Yajin, M.Q.-H. Meng, Huawei Liang, Lei Sun, Zhi Xu and Kun Shen (2006). Tfrc-probe: A transport protocol for teleoperation systems of mobile robots. Information Acquisition, 2006 IEEE International Conference on pp. 1492–1496.