Aplicación de la técnica de ruido electroquímico al estudio de pinturas comerciales de efecto barrera

  1. Santiago Lanchas García-Zarco 2
  2. Víctor Alfonsín Pérez 1
  3. Andrés Suarez García 1
  4. Santiago Urréjola Madriñán 1
  5. Ángel Sánchez Bermúdez 2
  1. 1 Centro Universitario de la Defensa, Escuela Naval Militar
  2. 2 Departamento de Ingeniería Química, Universidad de Vigo
Journal:
Revista de metalurgia

ISSN: 0034-8570

Year of publication: 2015

Volume: 51

Issue: 1

Pages: 39

Type: Article

DOI: 10.3989/REVMETALM.039 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de metalurgia

Abstract

Electrochemical noise is one of the methods of analysis used to interpret the phenomenon of corrosion. It has a number of advantages over other methodology types including its simplicity, its low cost and the fact that it does not disturb the system. This methodology appears to be effective together with other techniques in metal-electrolyte systems. In this case the technique is applied on its own on commercial anti-corrosion paints for which no information is available from other techniques. The main result of this study reveals the effectiveness of the noise resistance parameter, which had already been tested in the lab, when it is used to explain how the paint system behaves in industry.

Bibliographic References

  • Ahmed, N.M., Selim, M.M. (2010). Anticorrosive performance of titanium dioxide-talc hybrid pigments in alkyd paint formulations for protection of steel structures. Anti- Corros. Methods Mater. 57 (3), 133–141. http://dx.doi.org/10.1108/00035591011040092
  • ASTM International (2012). Standard Terminology for Paint, Related Coatings, Materials, and Applications. (ASTM D1612-05). West Conshohocken, PA, 2005, USA. http:// dx.doi.org/10.1520/D0016-12.
  • Casta-eda, I., Romero, M., Malo, J.M., Uruchurtu, J. (2010). Electrochemical noise of the erosion-corrosion of copper in relation with its hydrodynamic parameters. Rev. Metal. 46 (5), 446–457.
  • Espada Recarey, L., Sánchez Bermúdez, A., Urréjola Madri-án, S., Bouzada Alvela, F. (2001). Noise resistance applied to the study of zinc rich paints. Rev. Metal. 37 (1), 24–33. http://dx.doi.org/10.3989/revmetalm.2001.v37.i1.438
  • Cottis, R.A. (2001). Interpretation of electrochemical noise data. Corrosion 57 (3), 265–285. http://dx.doi.org/10.5006/1.3290350
  • Deyá, M.C., Del Amo, B., Spinelli, E., Romagnoli, R. (2013). The assessment of a smart anticorrosive coating by the electrochemical noise technique. Prog. Org. Coat. 76 (4) 525–532. http://dx.doi.org/10.1016/j.porgcoat.2012.09.014
  • Faidi, S.E., Scantlebury, J.D., Bullivant, P., Whittle, N.T., Savin, R. (1993). An electrochemical study of zinc-containing epoxy coatings on mild steel. Corros. Sci. 35 (5–8), 1319–1328. http://dx.doi.org/10.1016/0010-938X(93)90354-J
  • Gaona-Tiburcio, C., Aguilar, L.M.R., Zambrano, P., Estupi-án López, F., Cabral, J.A., Nieves-Mendoza, D., Castillo- González, E., Almeraya-Calderón, F. (2014). Electrochemical noise analysis of nickel based superalloys in acid solutions. Int. J. Electrochem. Sci. 9 (2), 523–533.
  • Hare, C.H. (1995). Protective Coatings: Fundamentals of Chemistry and composition. Surf. Coat. Int. 78, pp. 1–14-289–231.
  • Homborg, A.M., Tinga, T., Zhang, X., van Westing, E.P.M., Oonincx, P.J., de Wit, J.H.W., Mol, J.M.C. (2012). Time– frequency methods for trend removal in electrochemical noise data. Electrochim. Acta 70, 199–209. http://dx.doi.org/10.1016/j.electacta.2012.03.062
  • Mansfeld, F., Xiao, H., Han, L.T., Lee, C.C. (1997). Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites. Prog. Org. Coat. 30 (1–2), 89–100. http://dx.doi.org/10.1016/S0300-9440(96)00675-3
  • Muniandy, S.V., Chew, W.X., Kan, C.S. (2011). Multifractal modelling of electrochemical noise in corrosion of carbon steel. Corros. Sci. 53 (1), 188–200. http://dx.doi.org/10.1016/j.corsci.2010.09.005
  • Olaya-Flórez, J., Torres-Luque, M.M. (2012). Corrosion resistance of organic coatings through electrochemical impedance spectroscopy. Ingeniería y Universidad 16 (1), 43–58.
  • Pujar, M.G., Anita, T., Shaikh, H., Dayal, R.K., Khatak, H.S. (2007). Analysis of electrochemical noise (EN) data using MEM for pitting corrosion of 316 SS in chloride solution. Int. J. Electrochem. Sci. 2 (4), 301–310.
  • Sarmiento, E., González-Rodriguez, J.G., Uruchurtu, J., Sarmiento, O., Menchaca, M. (2009). Fractal analysis of the corrosion inhibition of carbon steel in a bromide solution by lithium chromate. Int. J. Electrochem. Sci. 4 (1), 144–155.
  • Shao, Y., Jia, C., Meng, G., Zhang, T., Wang, F. (2009). The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corros. Sci. 51 (2), 371–379. http://dx.doi.org/10.1016/j.corsci.2008.11.015
  • Skerry, B.S., Eden, D.A. (1987). Electrochemical testing to assess corrosion protective coatings. Prog. Org. Coat. 15 (3), 269–285.