Photorealistic simulated modelling from fractals applied to mined-out pit restoration

  1. Iván de Rosario-Amado 1
  2. José Santiago Pozo-Antonio 1
  3. Gabriel Lorenzo-Salgueiro 2
  4. Jorge Feijoo-Conde 1
  5. Javier Taboada-Castro 1
  1. 1 Escuela de Ingenieros de Minas, Universidad de Vigo, España
  2. 2 General de Hormigones S.A., España
Zeitschrift:
DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

ISSN: 0012-7353

Datum der Publikation: 2014

Ausgabe: 81

Nummer: 186

Seiten: 57-64

Art: Artikel

DOI: 10.15446/DYNA.V81N186.38101 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

Ziele für nachhaltige Entwicklung

Zusammenfassung

A la hora de realizar las restauraciones de entornos mineros, se ha empleado la modelización 3D debido fundamentalmente a su facilidad de manejo. Sin embargo, esta técnica no obtiene buenos resultados cuando genera estructuras naturales, como hojas de árboles, bordes de costa o sistemas montañosos. Gracias al desarrollo de la tecnología digital en los últimos años, nace el empleo de software informáticos basados en la geometría fractal, basada en la repetición continua de diversos objetos geométricos en diferentes escalas. Este trabajo está constituido por dos secciones diferenciadas. La primera presenta el fundamento de esta geometría orientada a restauraciones y rehabilitaciones medioambientales. La segunda parte presenta un caso práctico de restauración de una corta minera. Finalmente se presentan las ventajas del empleo de este tipo de geometría frente a la modelización 3D en el ámbito de las restauraciones mineras, destacando su realismo y bajo tiempo de ejecución.

Bibliographische Referenzen

  • Anhaia, T.R.S., Luiz, A.M.E., Leitão, K. and Moro, R.S., Pitagui's river upper course landscape in the Parana first Plateau, Brazil. RA'E GA-O Espaco Geografico en Analise, 24, pp. 134-148, 2012.
  • Barnsley, M.F., Fractal functions and interpolation. Constructive Approximation, 2 (1), pp. 303-329, 1986.
  • Barnsley, M.F., Massopust, P., Strickland, H. and Sloan, A.D., Fractal modeling of biological structures. Annals of the New York, Academy of Sciences, 504, pp. 179-194, 1987.
  • Bogachev, M.I., Eichner, J.F. and Bunde, A., Effect of nonlinear correlations on the statics of return intervals in multifractal data sets. Physical Review Letters, 99 (24), pp. 1-4, 2007.
  • Bunde, A. and Havlin, S., A brief introduction of fractal geometry, Fractals in science. Springer Verlag, 1994.
  • Chrabra, A., Geist, H.J., Houghton, R.A., Haberl, H., Braimoh, A.K. and Vlek, P.I., Multiple impacts of land-use/cover change. In: Lambin, E.F. and Geist, H.J., Land-use and land-cover change. Local Processes and Global Impacts, Berlin, Sringer-Verlag, 2006, pp. 71-116.
  • Dirzo, R. and Raven, P.H., Global state of biodiversity and loss. Annual Review of Environmental and Resources, 28, pp. 137-167, 2003.
  • Fadda, S., Fiori, M. and Matzuzzi, C., Developing rehabilitation design for the abandoned mine excavations in central Sardinia. International Journal of Mining, Reclamation and Environment, 24 (4), pp. 286-306, 2010.
  • Falconer, K.J., The Hausdorff dimension of some fractals and attractors of overlapping construction. Journal of Statistical Physics, . 47 (1-2), pp. 123-132, 1987.
  • Falconer, K.J. and Howroyd, J.D., Packing dimensions of projections and dimension profiles. Mathematical Proceedings of the Cambridge Philosophical Society, 121 (2), pp. 269-286, 1997.
  • Falconer, K.J. and Hu, J., Nonlinear diffusion equations on unbounded fractal domains. Journal of Mathematical Analysis and Applications, 256 (2), pp. 606-624, 2001.
  • Farina, A. and Bergrano, A., The eco-field hypothesis, toward a cognitive landscape. Landscape Ecology 21, pp. 5-17, 2005.
  • Lennartz, S. and Bunde, A., Distribution of natural trends in long-term correlated records, A scaling approach. Physical Review E 84, 021129, 2011.
  • Li, J-J., Wang, X-R., Wang, X-J., Ma, W-C. and Zhang, H., Remote sensing evaluation of urban heat island and its spatial pattern of the Shangai metropolitan area, China. Ecological Complexity, 6 (4), pp. 413-420, 2009.
  • Livina, V., Kizner, Z., Braun, P., Molnar, T., Bunde, A. and Havlin, S. Temporal scaling comparison of real hydrological data and model runoff records. Journal of Hydrology, vol. 336, pp. 186-198, 2007.
  • Mandelbrot, B.B., The fractal geometry of nature. W.H. Freman and Co. 1977.
  • Mandelbrot, B.B., Gefen, Y., Aharony, A. and Peyriere, J., Fractals, their transfer matrices and their eigen-dimensional sequences. Journal of Physics A, Mathematical and General, 18 (2), pp. 335-354, 1985.
  • Marí-Costa, V., Ecohistory of the agrarian landscape. An application for the Pituso field, pp. 240-250, 2003.
  • Martínez, S., Ramil, P. and Chuvieco, E., Monitoring loss of biodiversity in cultural landscapes. New methodology based on satellite data. Landscape and Urban Planning, 94, pp. 127-140, 2010.
  • Pacina, J., Novák, K. and Weiss, L., 3D modeling as a tool for landscape restoration and analysis, IFIP Advances in Information and Communication Technology, 359 AICT, pp. 123-138, 2011.
  • Skãlos J. and Käsparova, I., Landscape memory and landscape change in relation to mining, Ecological Engineering, 43, pp. 60-69.
  • Taketomi, T., Sato, T. and Yokoya, N., Real-time and accurate extrinsic camera parameter estimation using feature landmark database for augmented reality, Computer and Graphics, 35, pp. 768-777, 2011.
  • Tannier, C., Foltête, J.C. and Girardet, X., Assessing the capacity of different urban forms to preserve the connectivity of ecological habitats, Landscape and Urban Planning, 105, pp. 128-139, 2012.
  • Thomas, I., Frankhauser, P. and Biernacki, C., The morphology of built-up landscapes in Wallonia (Belgium). A classification using fractal indices, Landscape and Urban Planning, 84, pp. 99-115, 2008.
  • Vlad, M.O., Schönfish, B. and Mackey, M.C., Self-similar potentials in random media, fractal evolutionary landscapes and Kimura's neutral theory of molecular evolution, Physica A, 229, pp. 343-364, 1996.
  • Déjeant-Pons, M., The European landscape convention. Spatial Planning and Landscape Division, Council of Europe, Europe, France, Landscape Research, 31 (4), pp. 363-384, 2006.
  • Xfrog. Manual. Xfrog Corporation, 2011.
  • Yue, Y. and Jia, J., Computing offsets of NURBS curve and surface. In: Tan,R., Sun, J. and Liu, Q., Automatic Manufacturing Systems II, Advanced Materials Research, 542-543, pp. 537-540, 2012.
  • Zhang, D., Qu, S. and Kang, B., A new digital image hiding approach using multi-image fusion, Proceedings 1st International Workshop on Knowledge Discovery and Data Mining, WKDD, Art. No. 4470458, pp. 553-557, 2008.
  • Zhang, L-L., Estimation of box dimension for fractal image based on escape time algorithm. Fangzhi Gaoxiao Jichukexue Xuebao, vol. 21 (3), pp. 364-367, 2008.
  • Zhang, G., Lu, J., Song, K., Zhan, S. and Liang, Y., The change of landscape pattern in Zhenlai Xian, Jilin Province in recent ten years, Shengtai Xuebao/ Acta Ecologica Sinica, 32 (12), pp. 3958-3965, 2012.
  • Rojas-Sola, J.I., Montalvo-Gil, J.M. and Castro-García, M., 3D modelling and functional analysis of a head frame for mineral extraction. DYNA, 80 (181), pp. 118-125, 2013.