Moisture transport from the Arctica characterization from a Lagrangian perspective

  1. Marta Vázquez Domínguez 1
  2. Raquel Nieto Muñiz 12
  3. Anita Drumond 1
  4. Luis Gimeno Presa 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  2. 2 Universidade de São Paulo
    info

    Universidade de São Paulo

    São Paulo, Brasil

    ROR https://ror.org/036rp1748

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Latron, J. (ed. lit.)
  2. Lana-Renault Monreal, Noemí (ed. lit.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2018

Volumen: 44

Número: 2

Páginas: 659-673

Tipo: Artículo

DOI: 10.18172/CIG.3477 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

En las últimas décadas el océano Ártico ha sufrido un importante retroceso en el hielo marino, pudiendo estar estos cambios relacionados con variaciones en el transporte de humedad. La región ártica es un sumidero neto de humedad en términos de ciclo hidrológico total, sin embargo, su rol como fuente de humedad en algunas regiones concretas todavía no ha sido extensamente investigado. Nuestros resultados muestran que el 80% de la contribución de humedad ártica contribuye a precipitación sobre la propia región, representando este valor aproximadamente el 8% del aporte de humedad global sobre el Ártico. El 20% de humedad restante se distribuye en las regiones circundantes. El análisis de las áreas afectadas por el transporte de humedad desde el Ártico resulta importante a la hora de establecer aquellas áreas más vulnerables al cambio en el marco de un creciente retroceso en el hielo marino. Para tal fin, se he empleado el modelo lagrangiano FLEXPART para establecer los principales sumideros para el océano Ártico, centrándose en el transporte de humedad desde esta región. Los resultados sugieren que la mayor parte de la humedad tiene lugar sobre el propio ártico, especialmente en verano. Sobre Norte América y Eurasia se observa algún aporte de humedad en otoño e invierno, especialmente desde el Ártico Central, el mar de Siberia Oriental, los mares de Laptev, Kara, Barents, Groenlandia oriental y Bering y el mar de Okhotsk.

Información de financiación

The authors acknowledge funding by the Spanish government within the EVOCAR (CGL2015-65141-R) project, which is also funded by FEDER (European Regional Development Fund). Raquel Nieto was also supported by the Brazilian government through a CNPq grant 314734/2014-7.

Financiadores

Referencias bibliográficas

  • Boisvert, L.N., Wu, D.L., Shie, C.L. 2015. Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data. Journal of Geophysical Research: Atmospheres 120 (14), 6865-6881. https://doi.org/10.1002/2015JD023258.
  • Bowman, K.P., Lin, J.C., Stohl, A., Draxler, R., Konopka, P., Andrews, A., Brunner, D. 2013. Input Data Requirements for Lagrangian Trajectory Models. Bulletin of the American Meteorological Society 94, 1051-1058. https://doi.org/10.1175/BAMS-D-12-00076.1.
  • Castillo, R., Nieto, R., Drumond, A., Gimeno, L. 2014. Estimating the temporal domain when the discount of the net evaporation term affects the resulting net precipitation pattern in the moisture budget using a 3-D Lagrangian approach. PLoS ONE 9 (6). https://doi.org/10.1371/journal.pone.0099046.
  • Cavalieri, D.J., Parkinson, C.L. 2012. Arctic sea ice variability and trends, 1979-2010. The Cryosphere 6, 881-889. https://doi.org/10.5194/tc-6-881-2012.
  • Cohen, J., Screen, J.A., Furtado, J.C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., Jones, J. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7, 627-637. https://doi.org/10.1038/ngeo2234.
  • Comiso, J.C., Hall, D.K. 2014. Climate trends in the Arctic as observed from space. WIREs Climate Change 5, 389-409. https://doi.org/10.1002/wcc.277.
  • Comiso, J.C., Parkinson, C.L., Gersten, R., Stock, L. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 35, L01703. https://doi.org/10.1029/2007GL031972.
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K, Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N., Vitart, F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological. Society. 137, 553-597. https://doi.org/10.1002/qj.828.
  • Fetterer, F., Knowles, K., Meier, W., Savoie, M. 2016, updated daily. Sea Ice Index, Version 2. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5736NV7.
  • Gimeno, L., Stohl, A., Trigo, R.M., Domínguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán-Quesada, A.M., Nieto R. 2012. Oceanic and terrestrial sources of continental precipitation. Reviews of Geophysics 50, RG4003. https://doi.org/10.1029/2012RG000389.
  • Gimeno, L., Nieto R., Drumond, A., Castillo, R., Trigo, R.M. 2013. Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophysical Research Letters 40, 1443-1450. https://doi.org/10.1002/grl.50338.
  • Groves, D.G., Francis, J.A. 2002. Moisture budget of the Arctic atmosphere from TOVS satellite data. Journal of Geophysical Research 107 (D19), 4391. https://doi.org/10.1029/2001JD001191.
  • Holland, M.M., Bitz, C.M., Tremblay, B. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters 33, L23503. https://doi.org/10.1029/2006GL028024.
  • Koerner, R., Russell, R.D. 1979. Delta-O-18 variations in snow on the Devon Island Ice Cap, Northwest-Territories, Canada. Canadian Journal of Earth Sciences 16 (7), 1419-1427. https://doi.org/10.1139/e79-126.
  • Liu, J.P., Curry, J.A., Wang, H.J., Song, M.R., Horton, R.M. 2012. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences USA 109, 4074-4079. https://doi.org/10.7312/li--16274-011.
  • Meier, W.N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., Stroeve, J. 2013. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration. 2 ed. N. S. a. I. D. Center, Ed., NSIDC.
  • Nieto, R., Gimeno, L., Gallego, D., Trigo, R. 2007. Contributions to the moisture budget of airmasses over Iceland, Meteorologische Zeitschrift 16 (1), 37-44. https://doi.org/10.1127/0941-2948/2007/0176.
  • Numagati, A. 1999. Origin and recycling processes of precipitation water over the Eurasian continent: Experiments using an atmospheric general circulation model. Journal of Geophysical Research 104, 1957-1972. https://doi.org/10.1029/1998JD200026.
  • Overlan, J.E., Wang, M. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62, 1-9. https://doi.org/10.1111/j.1600-0870.2009.00421.x.
  • Overland, J.E., Wang, M., Walsh, J.E., Stroeve, J.C. 2014. Future Arctic climate changes: Adaptation and mitigation time scales. Earth's Future 2, 68-74. https://doi.org/10.1002/2013EF000162.
  • Park, H, Walsh, J.E, Kim, Y, Nakai, T., Ohata T. 2013. The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths. Polar Science 7, 174-187. https://doi.org/10.1016/j.polar.2012.10.002.
  • Parkinson, C.L., Di Girolamo, N.E. 2016. New visualizations highlight new information on the contrasting Arctic and Antarctic sea-ice trends since the late 1970s. Remote Sensing of Environment 183, 198-204. https://doi.org/10.1016/j.rse.2016.05.020.
  • Polyakov, I.V., Walsh, J.E., Kwok, R. 2012. Recent Changes of Arctic Multiyear Sea Ice Coverage and the Likely Causes. Bulletin of the American Meteorological Society 93, 145-151. https://doi.org/10.1175/BAMS-D-11-00070.1.
  • Scarchilli, C., Frezzotti, M., Ruti, P.M. 2011. Snow precipitation at four ice core sites in East Antarctica: provenance, seasonality and blocking factors. Climate Dynamics 37, 2107-2125. https://doi.org/10.1007/s00382-010-0946-4.
  • Schlosser, E., Oerter, H., Masson-Delmotte, V., Reijmer, C.H. 2008. Atmospheric influence on the deuterium excess signal in polar firn: implications for ice-core interpretation. Journal of Glaciology 54 (184), 117-124. https://doi.org/10.3189/002214308784408991.
  • Serreze, M.C., Barrett, A.P., Slater, A.G., Woodgate, R.A., Aagaard, K., Lammers, R.B., Steele, M., Moritz, R., Meredith, M., Lee, C.M. 2006. The large-scale freshwater cycle of the Arctic. Journal of Geophysical Research 111, C11010. https://doi.org/10.1029/2005JC003424.
  • Sodemann, H., Schwierz, C., Wernli, H. 2008. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence, Journal of Geophysical Research 113, D03107. https://doi.org/10.1029/2007JD008503.
  • Stohl, A., James, P. 2004. A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part I: Method Description, Validation, and Demonstration for the August 2002 Flooding in Central Europe. Journal of Hydrometeorology 5, 656-678. https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.
  • Stohl, A., James, P.A. 2005. A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part II: Moisture Transports between Earth’s Ocean Basins and River Catchments. Journal of Hydrometeorology 6, 961-984. https://doi.org/10.1175/JHM470.1.
  • Stohl, A., Forster, C., Sodemann, H. 2008. Remote sources of water vapor forming precipitation on the Norwegian west coast at 60 N-A tale of hurricanes and an atmospheric river. Journal of Geophysical Research Atmospheres 113, D05102. https://doi.org/10.1029/2007JD009006.
  • Stohl, A., Haimberger, L., Scheele, M.P., Wernli, H. 2001. An intercomparison of results from three trajectory models. Meteorological Applications 8 (2), 127-135. https://doi.org/10.1017/S1350482701002018.
  • Stroeve, J.C., Markus, T., Boisvert, L., Miller, J., Barrett, A. 2014. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters 41, 1216-1225. https://doi.org/10.1002/2013GL058951.
  • Stroeve, J.C., Mioduszewski, J.R., Rennermalm, A., Boisvert, L.N., Tedesco, M., Robinson, D. 2017. Investigating the local scale influence of sea ice on Greenland surface melt. The Cryosphere Discussions. https://doi.org/10.5194/tc-2017-65.
  • Vázquez, M., Nieto, R., Drumond, A., Gimeno, L. 2016. Moisture transport into the Arctic: Source-receptor relationships and the roles of atmospheric circulation and evaporation. Journal of Geophysical Research: Atmospheres 121, 13,493-13,509. https://doi.org/10.1002/2016JD025400.
  • Vihma, T. 2014. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surveys in Geophysics 35, 1175. https://doi.org/10.1007/s10712-014-9284-0.
  • Vihma, T., Screen, J., Tjernström, M., Newton, B., Zhang, X., Popova, V., Deser, C., Holland, M., Prowse, T. 2016. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. Journal of Geophysical Research: Biogeosciences 121, 586-620. https://doi.org/10.1002/2015JG003132.
  • Wang, M., Overland, J.E. 2009. A sea ice free summer Arctic within 30 years? Geophysical Research Letters 36, L07502. https://doi.org/10.1029/2009GL037820.
  • Wegmann, M., Orsolini, Y., Vázquez, M., Gimeno, L., Nieto, R., Bulygina, O., Jaiser, R., Handorf, D., Rinke, A., Dethloff, K., Sterin, A., Brönnimann, S. 2015. Arctic moisture source for Eurasian snow cover variation in autumn. Environmental Research Letters 10, 054015. https://doi.org/10.1088/1748-9326/10/5/054015.