Red inalámbrica de sensores con topología lineal sin capa de red

  1. Egas Acosta, Carlos 1
  2. Gil-Castiñeira, Felipe 2
  3. Costa-Montenegro, Enrique 2
  1. 1 Escuela Politécnica Nacional (Quito, Ecuador)
  2. 2 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

Revista:
Revista de Investigación en Tecnologías de la Información: RITI

ISSN: 2387-0893

Ano de publicación: 2021

Título do exemplar: Especial Taller Andino de Comunicaciones Inalámbricas y sus Aplicaciones

Volume: 9

Número: 17

Páxinas: 56-65

Tipo: Artigo

DOI: 10.36825/RITI.09.17.006 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Revista de Investigación en Tecnologías de la Información: RITI

Resumo

A particular case of wireless sensor networks are those that have a linear topology. These networks are used in monitoring large-scale linear infrastructures that are characterized by having thousands of sensor nodes, hundreds of hops and great lengths. The requirements for routing in linear topologies are minimal relative to the requirements of other topologies. There are currently several network architectures and routing protocols for wireless sensor networks, which have been created based on the application that will run on the nodes. Routing protocols designed for mesh, tree, and star topologies are very complex when applied to linear multi-hop topologies, resulting in large processing delays. This article defines the relevance of the existence of the network level in the network architecture with linear topology, for which the functions of the network protocols that are applicable to linear topologies are analyzed. Finally, it is justified that the network level is not necessary in wireless sensor networks with linear topology, and as a consequence, the network levels that the new network architecture should have are proposed.

Referencias bibliográficas

  • IEEE Computer Society. (2006). Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Nconetworks (WPANs). IEEE Standard. Recuperado de: http://profsite.um.ac.ir/~hyaghmae/ACN/WSNMAC1.pdf
  • Varshney, S., Kumar, C., Swaroop, A., Khanna, A., Gupta, D., Rodrigues, J. J. P. C., Pinheiro, P. R., de Albuquerque, V. H. C. (2018). Energy efficient management of pipelines in buildings using linear wireless sensor networks. Sensors, 18 (8), 1-17. doi: https://doi.org/10.3390/s18082618
  • Ali, S., Ashraf, A., Qaisar, S. B., Kamran Afridi, M., Saeed, H., Rashid, S., Felemban, E. A., Sheikh, A. A. (2018). SimpliMote: A Wireless Sensor Network Monitoring Platform for Oil and Gas Pipelines. IEEE Systems Journal, 12 (1), 778-789. doi: https://doi.org/10.1109/JSYST.2016.2597171
  • Arjun, D., Indukala, P. K., Menon, K. A. U. (2018). Border surveillance and intruder detection using wireless sensor networks: A brief survey. Trabajo presentado en International Conference on Communication and Signal Processing (ICCSP), Chennai, India. doi: https://doi.org/10.1109/ICCSP.2017.8286552
  • Vachan, B. R., Mishra, S. (2019). A user monitoring road traffic information collection using sumo and scheme for road surveillance with deep mind analytics and human behavior tracking. Trabajo presentado en IEEE 4th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China. doi: https://doi.org/10.1109/ICCCBDA.2019.8725761
  • Kadir, E. A., Rosa, S. L., Yulianti, A. (2019). Application of WSNs for Detection Land and Forest Fire in Riau Province Indonesia. Trabajo presentado en International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal Pinang, Indonesia . doi: https://doi.org/10.1109/ICECOS.2018.8605197
  • Sazak, N., Ertug, M. (2017). The effect of node deployment scheme on LWSN lifetime for railway monitoring applications. Trabajo presentado en IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Milan, Italia. doi: https://doi.org/10.1109/EESMS.2017.8052692
  • Raposo, D., Rodrigues, A., Sinche, S., Sá Silva, J., Boavida, F. (2018). Industrial IoT monitoring: Technologies and architecture proposal. Sensors, 18 (10), 1-32. doi: https://doi.org/10.3390/s18103568
  • Gratton, D. A. (2016). 12 - ZigBee: Untethered and Unlicensed. En D. A. Gratton (Ed.) Developing Practical Wireless Applications (pp. 166-180). Burlington: Digitla Press. doi: https://doi.org/10.1016/b978-155558310-1/50015-x
  • Chen, Y., Hou, K. M., Zhou, H., Shi, H. L., Liu, X., Diao, X., Ding, H., Li, J. J., De Vaulx, C. (2011). 6LoWPAN stacks: A survey. Trabajo presentado en 7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China. doi: https://doi.org/10.1109/wicom.2011.6040344
  • Suhonen, J. (2012). Designs for the Quality of Service Support in Low-Energy Wireless Sensor Network Protocols (Tesis Doctoraqdo). Tampere Universiy of Technology. Recuperado de: https://www.realin.fi/lib/docs/Jukka%20Suhonen%20PhD%20thesis.pdf
  • Rani, S., Ahmed, S. H., Malhotra, J., Talwar, R. (2017). Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 42-50. doi: https://doi.org/10.1016/j.jnca.2017.01.011
  • Gupta, S. K., Kumar, S., Tyagi, S., Tanwar, S. (2020). Energy Efficient Routing Protocols for Wireless Sensor Network. En P. Singh, B. Bhargava, M. Paprzycki, N. Kaushal, WC. Hong (Eds.), Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario's. Advances in Intelligent Systems and Computing (pp. 275-298). Cham: Springer. doi: https://doi.org/10.1007/978-3-030-40305-8_14
  • Egas, C., Gil-Castiñeira, F. (2021). Revisión de requisitos, protocolos y desafíos en LWSN. Maskay, 11 (1), 13–21. https://doi.org/10.24133/maskay.v11i1.1728
  • Kumar S., A. A., Ovsthus, K., Kristensen., L. M. (2014). An industrial perspective on wireless sensor networks-a survey of requirements, protocols, and challenges. IEEE Communications Surveys and Tutorials, 16 (3), 1391-1412. doi: https://doi.org/10.1109/SURV.2014.012114.00058
  • Karl, H., Willig, A. (2006). Protocols and Architectures for Wireless Sensor Networks. En H. Karl, A. Willig (Eds), Protocols and Architectures for Wireless Sensor Networks (pp. 15-57). England: John Wiley & Sons Ltd. doi: https://doi.org/10.1002/0470095121
  • Vasseur, J.-P., Dunkels, A. (2010). Chapter 22 - Smart Cities and Urban Networks. En J.-P. Vasseur, A. Dunkels (Eds.), Interconnecting Smart Objects with IP: The Next Internet (pp. 335-351), Burlington: Elsevier. doi: https://doi.org/10.1016/B978-0-12-375165-2.00022-3
  • Egas, A. C., Gil-Castineira, F., Costa-Montenegro, E., Sa Silva, J. (2016). Automatic allocation of identifiers in linear wireless sensor networks using link-level processes. Trabajo presentado en 8th IEEE Latin-American Conference on Communications (LATINCOM), Medellín, Colombia. doi: https://doi.org/10.1109/LATINCOM.2016.7811574
  • Egas, C., Gil-Castiñeira, F., Espinosa Gualotuña, C. (2020). Optimization of delays and power consumption in large-scale linear networks using iACK. Trabajo presentado en IEEE ANDESCON, Quito, Ecuador. doi: https://doi.org/10.1109/ANDESCON50619.2020.9272063
  • Rosberg, Z., Liu, R. P., Dong, A. Y., Tuan, L. D., Jha, S. (2008). ARQ with implicit and explicit ACKs in wireless sensor networks. Trabajo presentado en IEEE Global Telecommunications, New Orleans, USA. doi: https://doi.org/10.1109/GLOCOM.2008.ECP.18
  • Mahmood, M. A., Seah, W. K. G., Welch, I. (2015). Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks, 79, 166-187. doi: https://doi.org/10.1016/j.comnet.2014.12.016
  • Fontes, F., Rocha, B., Mota, A., Pedreiras, P., Silva, V. (2020). Extending MQTT-SN with Real-Time Communication Services. Trabajo presentado en IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria. doi: https://doi.org/10.1109/ETFA46521.2020.9212147
  • Iglesias-Urkia, M., Orive, A., Urbieta, A. (2017). Analysis of CoAP Implementations for Industrial Internet of Things: A Survey. Procedia Computer Science, 109, 188-195. doi: https://doi.org/10.1016/j.procs.2017.05.323
  • Martí, M., Garcia-Rubio, C., Campo, C. (2019). Performance Evaluation of CoAP and MQTT_SN in an IoT Environment. Proceedings, 31 (1), 1-12. doi: https://doi.org/10.3390/proceedings2019031049
  • Díaz Guano, J. D., Mejía Mejía, M. F. (2019). Implementación de un algoritmo para la detección de nodos caídos y fallos de enlace en topologías tipo árbol utilizando el estándar IEEE 802.15.4 (Tesis de grado). Escuela Politécnica Nacional. doi: https://bibdigital.epn.edu.ec/handle/15000/20267?mode=full
  • ATMEL. (2013). Atmel AVR10004: RCB256RFR2 – Hardware User Manual. Recuperado de: https://ww1.microchip.com/downloads/en/AppNotes/Atmel-42081-RCB256RFR2-Hardware-User-Manual_Application-Note_AVR10004.pdf