Monitorización de la coyuntura económica regional a través de un indicador sintético

  1. Esther López Vizcaino 1
  2. Patricio Sánchez-Fernández 2
  3. Carlos L. Iglesias Patiño 1
  1. 1 Instituto Galego de Estatística
  2. 2 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

Aldizkaria:
Revista de estudios regionales

ISSN: 0213-7585

Argitalpen urtea: 2020

Zenbakia: 119

Orrialdeak: 15-41

Mota: Artikulua

Beste argitalpen batzuk: Revista de estudios regionales

Laburpena

This paper builds a synthetic indicator that aims to provide a tool for monitoring the economic situation of a region. Thus, a synthetic indicator is constructed by applying to the economic data a dynamic factorial model that allows reducing the dimensionality of the initial data.To guarantee its technical solvency, the synthetic indicator developed considers the methodological developments pointed out by Stock & Watson (1991). In this way, we proceed by applying the dynamic factorial model to the economic series. This sort of indicators constructed using dynamic common factor models aims to represent a relatively large set of initial series by means of a smaller set that achieves a simpler and more compact interpretation

Erreferentzia bibliografikoak

  • ANGELINI, E., CAMBA-MÉNDEZ, G., GIANNONE, D., REICHLIN, L., RUNSTLER, G. (2008): Shortterm forecasts of Euro area GDP growth, CEPR Discussion Paper Nº 6746.
  • ARUOBA, S. B., DIEBOLD, F. X., SCOTTI, C. (2009): “Real-time measurement of business conditions”. Journal of Business & Economic Statistics, 27(4).
  • ARTÍS, M., PONS, J., SIERRA, M. Á., SURIÑACH, J. (1997): “Nivel de actividad mediante indicadores de coyuntura”. Revista de economía aplicada, 13, 129-147.
  • BURNS, A., MITCHELL, W. (1946): Measuring business cycles. National Bureau of Economic Research.
  • CAMACHO, M., DOMÉNECH, R. (2011): “MICA-BBVA: A Factor Model of Economic and Financial Indicators for Short-term GDP Forecasting”, Journal of the Spanish Economic Association.
  • CAMACHO, M., PEREZ-QUIROS, G. (2009): Ñ-Sting: España Short Term Indicator of Growth, Banco de España, Working Paper Nº. 0912.
  • CENDEJAS, J. L., DE LUCAS, S., DELGADO, M. J., ÁLVAREZ I. (2011): “Testing for structural breaks in factor loadings: An application to international business cycles”, Economic Modelling, 28 (1-2), 259-263.
  • CENDEJAS BUENO, J. L., DE LUCAS, S., DELGADO RODRÍGUEZ, M. J. (2014): Evaluación del cambio estructural en los indicadores cíclicos. Estadística española, 56(183), 39-60.
  • CUEVAS, Á., QUILIS, E. M. (2012): “A factor analysis for the Spanish economy”. SERIEs, 3(3), 311-338.
  • CUEVAS, A., QUILIS, E. M., ESPASA, A. (2015): “Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking”. Journal of Official Statistics, 31(4), 627-647.
  • DEMPSTER, A. P., LAIRD, N. M., RUBIN, D. B. (1977): Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B, 39, 1-38
  • EVANS, C. L., LIU, C. T., PHAM-KANTER, G. (2002): “The 2001 recession and the Chicago Fed National Activity Index: Identifying business cycle turning points”. Economic Perspectives-Federal Reserve Bank Of Chicago, 26(3), 26-43.
  • GABISCH, G., LORENZ, H. (2013): Business Cycle Theory: A Survey of Methods and Concepts. Springer Science & Business Media.
  • GARRIDO YSERTE, R., GALLO RIVERA, M. T., MARTÍNEZ GAUTIER, D. (2016): “La crisis económica y la geografía del tejido empresarial español: 2000-2013”. Revista de Estudios Regionales, 106, 165-195.
  • GIANNONE, D., REICHLIN, L., SMALL, D. (2008): “Nowcasting: The real-time informational content of macroeconomic data”. Journal of Monetary Economics, 55, 665-676.
  • JOHANSEN, S. (1991): “Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models”. Econometrica: Journal of the Econometric Society, 1551-1580.
  • HOLMES, E. E., WARD, E. J., SCHEUERELL, M.D. (2014): Analysis of multivariate time series using the MARSS package. http://cran.r-project.org/web/packages/MARSS/vignettes/UserGuide.pdf
  • MARCELLINO, M., STOCK, J. H., WATSON, M. W. (2003): “Macroeconomic forecasting in the euro area: Country specific versus area-wide information”. European Economic Review, 47(1), 1-18.
  • MARIANO, R. S., MURASAWA, Y. (2003): “A New coincident index of business cycles based ond monthly and quarterly series”. Journal of Applied Econometrics. 18, (4), 427-443.
  • MONDÉJAR-JIMÉNEZ, J., VARGAS-VARGAS, M. (2008): “Indicadores sintéticos: una revisión de los métodos de agregación”. Economía, sociedad y territorio, 8(27), 565-585.
  • MUÑOZ, F., TROMBETTA, M. (2015): “Indicador Sintético de Actividad Provincial (ISAP): un Aporteal Análisis de las Economías Regionales argentinas”. Investigaciones Regionales, 33, 71-96
  • PEÑA, D., PONCELA, P. (2004): “Nonstationary dynamic factor analysis”. Journal of statistical planning and inference, 136(4), 1237-1257.
  • SÁNCHEZ FERNÁNDEZ, P., GALLEGO RODRÍGUEZ, E., RIVERO FERNÁNDEZ, D., LAGO PEÑAS, S. (2014): “El impacto de la actividad exportadora sobre las empresas: Evidencia empírica para el caso gallego”. Revista de Estudios Regionales, 100, 223-243.
  • SHUMWAY, R. H., STOFFER, D.S. (1982): “An approach to time series smoothing an forecasting using the EM algorithm”. Journal of time series analysis, 3, 253-264.
  • STOCK, J. H., WATSON, M. W. (1991): “A probability model of the coincident economic indicators”, K. Lahiri, G.H. Moore (eds.): Leading economic indicators. New approaches and forecasting records. Cambridge, Cambridge University Press,
  • STOCK, J. H., WATSON, M. W. (2002): “Macroeconomic forecasting using diffusion indexes”. Journal of Business & Economic Statistics, 20(2), 147-162.
  • TRUJILLO, F., BENÍTEZ, M. D., LÓPEZ, P. (2000): “Trimestralización de los valores añadidos sectoriales mediante indicadores. Aplicación al caso de Andalucía”. Revista de Estudios Regionales, 57, 59-97.
  • U.S. CENSUS BUREAU (2002): X-12-ARIMA Reference Manual Version 0.2.10. September.
  • ZHANG, H. (2009): “Comparación entre dos métodos de reducción de dimensionalidad en series de tiempo”. Revista Colombiana de Estadística, 32 (2), 189-212.
  • WATSON, M.W. ENGLE, R.F. (1983): “Alternative algorithms for the estimation of dynamic, mimic and varying coefficient regression models”. Journal of Econometrics,23, 385-400.
  • WOOD, S. (2006): “Generalized Additive Models: an introduction with R”, Chapman and Hall/CRC. http://reseau-mexico.fr/sites/reseau-mexico.fr/files/igam.pdf.