Aguas termales, arcillas y algas como ingredientes en la cosmética termal

  1. María Lourdes Mourelle Mosqueira 1
  2. José Luis Legido Soto 1
  3. Carmen Paula Gómez Pérez 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

Revista:
Investigación: cultura, ciencia y tecnología

ISSN: 1889-4399

Ano de publicación: 2021

Número: 26

Páxinas: 55-64

Tipo: Artigo

Outras publicacións en: Investigación: cultura, ciencia y tecnología

Resumo

En este trabajo se muestra la descripción del término cosmético y sus variantes como cosmético termal, cosmecéutico y, por otro lado, se presentan los principales ingredientes utilizados en la cosmética termal como son el agua mineromedicinal, las arcillas y las algas. Estas materias primas son descritas, destacando la riqueza en oligoelementos y minerales de las aguas termales, las propiedades absorbentes y renovadoras celulares de las arcillas y peloides, así como, la gran diversidad de moléculas bioactivas de las algas, microalgas y cianobacterias

Referencias bibliográficas

  • Adrien, A.; Bonnet, A.; Dufour, D.; Baudouin, S.; Maugard, T., & Bridiau, N. 2017. Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydr. Polym. 157: 1306-1314.
  • Allwood, M. C., & Kearney, M. C. 1998. Compatibility and stability of additives in parenteral nutrition admixtures. Nutrition, 14 (9): 697-706.
  • Anderson, C., & MacKay, M. 2016. Physical compatibility of calcium chloride and sodium glycerophosphate in pediatric parenteral nutrition solutions. Journal of Parenteral and Enteral Nutrition, 40 (8): 1166-1169.
  • Bedoux, A.; Hardouin, K.; Burlot, A. S., & Bourgougnon, N. 2014. Bioactive components from seaweeds: cosmetic applications and future development. Adv. Bot. Res. 71: 345-378.
  • Beringhs, A. O. R.; Rosa, J. M.; Stulzer, H. K.; Budal, R. M.; Sonaglio, D. 2013. Green clay and aloe vera peel-off facial masks: response surface methodology applied to the formulation design. AAPS PharmSciTech, 14: 445-455.
  • Borowitzka, M. A. 2013. High-value products from microalgae-their development and commercialisation. J. Appl. Phycol., 25: 743-756.
  • Bule, M. H.; Ahmed, I.; Maqbool, F.; Bilal, M.; Iqbal, H. M. N. 2018. Microalgae as a source of high-value bioactive compounds. Frontiers InBiosc. Scholar, 10: 197-216.
  • Carretero, M. I. 2002. Clay minerals and their beneficial effects upon human health: a review. Applied Clay Science, 21(3-4):155-163.
  • Carretero, M. I. y Pozo, M. 2010. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. App. Clay Sci., 47: 171-181.
  • Chandrasekaran, N. C.; Sanchez, W. Y.; Mohammed, Y. H.; Grice, J. E.; Roberts, M. S., and Barnard, R. T. 2016. Permeation of topicallyapplied magnesium ions through humanskin is facilitated by hair follicles. Magnes. Res. 29, 35-42.
  • Chrapusta, E.; Kaminski, A.; Duchnik, K.; Bober, B.; Adamski, M., & Bialczyk, J. 2017. Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. Mar. Drugs 15 (10): 326
  • Couteau, C., & Coiffard, L. 2016. Seaweed Application in Cosmetics. In: Levine & Fleurence (Eds.). Seaweed in Health and Disease Prevention (pp. 423-441). Nantes, France. Academic Press.
  • Daneluz, J.; da Silva Favero, J.; dos Santos, V.; Weiss-Angelia, V.; Bonan Gomes, L.; SampaioMexias, A.; Pérez Bergmann, C. 2020. The Influence of Different Concentrations of a Natural Clay Material as Active Principle in Cosmetic Formulations. Materials Research. 23 (2): e20190572.
  • De Vos, P. 2010. European materiamedica in historical texts: longevity of a tradition and implications for future use. J. Ethnopharmacol., 132: 28-47.
  • Dias Moraes, J. D.; Alina Bertolino, S. R.; Cuffini, S. L.; Ducart, D. F.; Bretzke, P. E.; Ricci Leonardia, G. 2017. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review. International Journal of Pharmaceutics. 534: 213-219.
  • Draelos Z. D. 2014. Cosmeceuticals. Efficacy and Influence on Skin Tone. Dermatol. Clin. 32: 137-143.
  • Gomes, C.; Carretero, M. I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J. L.; Teixeira, F.; Rautureau, M.; Delgado, R. 2013. Peloids and pelotherapy: Historical evolution, classification and glossary. Applied Clay Science, 75: 28-38.
  • Gomes, C. S. F., y Silva, J. B. P. 2007. Minerals and clay minerals in medical geology. Applied Clay Science. 36: 4-21.
  • Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. 2019. Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A Review. Cosmetics, 6: 13-29.
  • Guillerme, J-B.; Couteau, C., & Coiffard, L. 2017. Applications for Marine Resources in Cosmetics. Cosmetics, 4 (3): 35.
  • Isaka, S.; Cho, K.; Nakazono, S.; Abu, R.; Ueno, M.; Kim, D. & Oda, T. 2015. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyrayezoensis). Int. J. Biol. Macromol., 74: 68-75.
  • Ismaiel, M. M. S.; El-Ayouty, Y. M., & Piercey-Normore, M. D. 2014. Antioxidants characterization in selected cyanobacteria. Ann Microbiol., 64 (3): 1223-1230.
  • Khalilzadeh, S.; Shirbeigi, L.; Naghizadeh, A. 2019. Use of mineral waters in the treatment of psoriasis: Perspectives of Persian and conventional medicine. Dermatologic Therapy. 32: e12969. DOI: 10.1111/dth.12969.
  • Khiari, I.; Mefteh, S.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C.; LópezGalindo, A.; Jamoussi, F.; Viseras Iborra, C. 2014. Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs Applied Clay Science 101: 141-148.
  • Kim, J. H.; Lee, J.-E.; Kim, K. H., & Kang, N. J. 2018. Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health. Mar. Drugs, 16 (11): 459.
  • Kim, S-K.; Ravichandran, Y. D.; Khan, S. B.; Kim Y. T. 2008. Prospective of the Cosmeceuticals Derived from Marine Organisms. Biotechnology and Bioprocess Engineering, 13 (5): 511-523.
  • Kobayashi, D.; Kusama, M.; Onda, M., & Nakahata, N. 2011. The Effect of Pantothenic Acid Deficiency on Keratinocyte Proliferation and the Synthesis of Keratinocyte Growth Factor and Collagen in Fibroblast. J. Pharmacol. Sci., 115 (2): 230-234.
  • Koller, M.; Muhr, A., & Braunegg, G. 2014. Microalgae as versatil ecellular factories for valued products. Algal Research, 6: 52-63.
  • Łeska, B.; Messyasz, B., & Schroeder, G. 2018. Application of Algae Biomass and Algae Extracts in Cosmetic Formulations. In: Chojnacka, K.; Wieczorek, P.; Schroeder, G.; Michalak I. (Eds) Algae Biomass: Characteristics and Applications. Developments in Applied Phycology. 8. ISBN 978-3-319-74702- 6. DOI 10.1007/978-3-39-74703-3.
  • Liu, X.; Yuan, W.; Sharma-Shivappa, R.; Van Zanten, J. 2017. Antioxidant activity of phlorotannins from brown algae. November 2017 International Journal of Agricultural and Biological Engineering 10 (6): 184-191.
  • López-Galindo, A.; Viseras, C.; Cerezo, P. 2007. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products Applied Clay Science 36: 51-63.
  • Matsui, M.; Tanaka, K.; Higashiguchi, N.; Okawa, H.; Yamada, Y.; Tanaka, K.; Taira, S.; Aoyama, T.; Takanishi, M., & Natsume, C. 2016. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation. J. Pharmacol. Sci., 132: 55-64.
  • Meijide, R., y Mourelle, M. L. 2006. Afecciones dermatológicas y cosmética dermotermal. En: Hernández Torres, A. (Coord.). Técnicas y Tecnologías en Hidrología Médica e Hidroterapia. Agencia de Evaluación de Tecnologías Sanitarias. Instituto Carlos III, Madrid, 2006; pp 175-194.
  • Mourelle, M. L.; Gómez, C. P.; Legido, J. L. 2015. Cosmética dermotermal: valor añadido para los centros termales. Congreso Internacional del Agua, Termalismo y Calidad de Vida. Campus da Auga, Ourense, España.
  • Mourelle, M. L.; Gómez, C. P.; Legido, J. L. 2017. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics, 4, 46.
  • Mourelle, M. L.; Gómez, C. P.; Legido, J. L. 2021. Role of algal derived compounds in pharmaceutical and cosmetics. In: Rajauria, G., & Yuan, Y. V., Recent Advances in Micro and Macroalgal Processing: Food and Health Perspectives. Wiley editors.
  • Nunes, S., y Tamura, B. M. 2012. A historical review of mineral water. Surg. Cosmet. Dermatol., surgical cosmetic. org. br.
  • Pangestuti, R.; Siahaan, E. A., & Kim, S.-K. 2018. Photoprotective Substances Derived from Marine Algae. Mar. Drugs, 16: 399.
  • Sellimi, S.; Maalej, H.; Rekik, D. M.; Benslima, A.; Ksouda, G.; Hamdi, M.; Sahnoun, Z.; Li, S.; Nasri, M., & Hajji, M. 2018. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int. J. Biol. Macromol., 119: 633-644.
  • Song, Y.-S.; Li, H.; Balcos, M. C.; Yun, H.-Y.; Baek, K. J.; Kwon, N.S .; Choi, H.-R.; Park, K.-C., & Kim, D.-S. 2014. Fucoidan Promotes the Reconstruction of Skin Equivalents. Korean J. Physiol. Pharmacol., 18: 327-331.
  • Suh, S. S.; Oh, S. K.; Lee, S. G.; Kim, I. C.; Kim, S. 2017. Porphyra-334, a mycosporine-like amino acid, attenuates UV-induced apoptosis in HaCaT cells. Acta Pharm., 67: 257-264.
  • Tarnowska, M.; Brianc_on, S.; Resende de Azevedo, J.; Chevalier, Y.; Arquier, D.; Barratier C., and Bolzinger, M.-A. 2020.The effect of vehicleon skin absorption of Mg2+ and Ca2+from thermals pring water. International Journal of Cosmetic Science, 42: 248-258.
  • Viseras, C.; Aguzzi, C.; Cerezo, P.; López-Galindo A. 2007. Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36: 37-50.
  • Viseras, C.; Carazo E.; Borrego-Sanchez, A.; García-Villén, F.; SánchezEspejo, R.; Cerezo, P.; Aguzzi, C. 2019. Clay minerals in skin drug delivery. Clays and Clay Minerals, 67: 59-71.
  • Waring, R. H. 2014. Report on magnesium sulfateacross the skin. Available at: http://www.mgwater.com/transdermal.shtml.
  • Widiastuti, E. L., & Khairani, I. A. 2018. Antioxidant effect of taurine and macroalgae (Sargassum sp. and Gracilaria sp.) extraction on numbers of blood cells and protein profile of mice induced by benzo(a)piren. IOP Conf. Series: Journal of Physics: Conf. Series, 1116, 05207