Biology of the oldest butterfly species in the world, Baronia brevicornisfood, abundance, polymorphism, and survival

  1. Ivette Galicia-Mendoza 1
  2. Fernando Pineda-García 1
  3. Ken Oyama 1
  4. Adolfo Cordero-Rivera 2
  5. Marcela Osorio-Beristain 3
  6. Jorge Contreras-Garduño 1
  1. 1 Universidad Nacional Autónoma de México
    info

    Universidad Nacional Autónoma de México

    Ciudad de México, México

    ROR https://ror.org/01tmp8f25

  2. 2 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  3. 3 Universidad Autónoma del Estado de Morelos
    info

    Universidad Autónoma del Estado de Morelos

    Cuernavaca, México

    ROR https://ror.org/03rzb4f20

Revista:
Revista Mexicana de Biodiversidad

ISSN: 2007-8706 1870-3453

Ano de publicación: 2021

Volume: 92

Número: 4

Tipo: Artigo

DOI: 10.22201/IB.20078706E.2021.92.3503 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Revista Mexicana de Biodiversidad

Resumo

El estudio de la biología básica de especies pancrónicas podría ayudar a entender su persistencia a través del tiempo geológico. Una de las especies pancrónicas menos estudiadas es Baronia brevicornis Salvin (Lepidoptera:Papilionidae), una mariposa endémica de México y la especie más antigua del mundo. Estudiamos por 3 años una población de B. brevicornis en la sierra de Huautla, Morelos. En esta población identificamos 3 morfos de color en los machos y 3 en las hembras, quizás el polimorfismo más complejo descrito para especies pancrónicas. También encontramos que la proporción sexual es balanceada en los adultos recién emergidos, pero sesgada hacia los machos en los sitios reproductivos. De manera importante, solamente encontramos mariposas en los parches de Vachellia campechiana (Mill.) Seigler & Ebinger (Fabaceae), que además tenían plantas de las que se podían alimentar los adultos, y aquí reportamos por primera vez que los adultos se alimentan de 5 especies de plantas. Asimismo, las diferencias en uso del agua de V. campechiana en zonas con y sin B. brevicornis sugieren una relación entre las fuentes de alimentos de las mariposas y el gasto de agua de las plantas. Nuestros hallazgos pueden ser fundamentales para desarrollar planes de conservación para B. brevicornis.

Referencias bibliográficas

  • Anderson, D. R., Link, W. A., Johnson, D. H., & Burnham, K. P. (2001). Suggestions for presenting the results of data analysis. Journal of Wildlife Management, 65, 373–378. https://doi.org/10.2307/3803088
  • Archer, S., & Detling, J. K. (1986). Evaluation of potential herbivore mediation of plant water status in a North American mixed-grass prairie. Oikos, 47, 287–291. https://doi.org/10.2307/3565439
  • Berwaerts, K., Aerts, P., & Dyck, H. V. (2006). On the sex-specific mechanisms of butterfly fight: flight performance relative to flight morphology, wing kinematics, and sex in Pararge aegeria. Biological Journal of the Linnean Society, 89, 675–687. https://doi.org/10.1111/j.1095-8312.2006.00699.x
  • Blumenthal, D. M., Mueller, K. E., Kray, J. A., Ocheltree, T. W., Augustine, D. J., & Wilcox, K. R. (2020). Traits link drought resistance with herbivore defense and plant economics in semi-arid grasslands: the central roles of phenology and leaf dry matter content. Journal of Ecology, 108, 2336–2351. https://doi.org/10.1111/1365-2745.13454
  • Brown, I. L., & Ehrlich, P. R. (1980). Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia, 47, 239–251. https://doi.org/10.1007/bf00346827
  • Brussard, P. F., & Ehrlich, P. R. (1970). The population structure of Erebia epipsodea (Lepidoptera: Satyrinae). Ecology, 51, 119–129. https://doi.org/10.2307/1933605
  • Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. Model selection and multimodel inference. New York: Springer.
  • Carey, J. R., Liedo, P., Orozco, D., Tatar, M., & Vaupel, J. W. (1995). A male-female longevity paradox in medfly cohorts. Journal of Animal Ecology, 64, 107–116. https://doi.org/10.2307/5831
  • Cavender-Bares, J., Sack, L., & Savage, J. (2007). Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology, 27, 611–620. https://doi.org/10.1093/treephys/27.4.611
  • Chai, P., & Srygley, R. H. (1990). Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. The American Naturalist, 135, 748–765. https://doi.org/10.1086/285072
  • Covarrubias-Camarillo, T., Osorio-Beristain, M., Legal, L., & Contreras-Garduño, J. (2016). Baronia brevicornis caterpillars build shelters to avoid predation. Journal of Natural History, 20, 2933–2310. https://doi.org/10.1080/00222933.2016.1193640
  • Donald, P. F. (2007). Adult sex ratios in wild bird populations. Ibis, 149, 671–692. https://doi.org/10.1111/j. 1474-919X.2007.00724.x
  • Ehrlich, P. R., Launer, A. E., & Murphy, D. D. (1984). Can sex ratio be defined or determined? The case of a population of checkerspot butterflies. The American Naturalist, 124, 527–539. https://doi.org/10.1086/284292
  • Espeland, M., Breinholt, J., Willmott, K. R., Warren, A. D., Vila, R., Toussaint, E. F. A. et al. (2018). A comprehensive and dated phylogenomic analysis of butterflies. Current Biology, 28, 770–778. https://doi.org/10.1016/j.cub.2018.01.061
  • Fallon, B., & Cavender-Bares, J. (2018). Leaf-level trade-offs between drought avoidance and desiccation recovery drive elevation stratification in arid oaks. Ecosphere, 9, e02149. https://doi.org/10.1002/ecs2.2149
  • Freitas, A. V. L. (1993). Biology and population dynamics of Placidula euryanassa, a relict ithomiine butterfly (Nymphalidae: Ithomiinae). Journal of the Lepidopterists Society, 47, 87–105.
  • Galicia-Mendoza, I., Sanmartín-Villar, I., Espinosa-Soto, C., & Cordero-Rivera, A. (2017). Male biased sex ratio reduces the fecundity of one of three female morphs in a polymorphic damselfly. Behavioral Ecology, 28, 1183–1194. https://doi.org/10.1093/beheco/arx086
  • Goff, J., Yerke, C., Keyghobadi, N., & Matter, S. F. (2019). Dispersing male Parnassius smintheus butterflies are more strongly affected by forest matrix than are females. Insect Science, 26, 932–944. https://doi.org/10.1111/1744-7917.12592
  • Grandcolas, P., Nattier, R., & Trewick, S. A. (2014). Relict species: a relict concept? Trends Ecology and Evolution, 29, 655–663. https://doi.org/10.1016/j.tree2014.10.002
  • Grassé, P. P. (2013). Evolution of living organisms: evidence for a new theory of transformation. New York: Academic Press Inc.
  • Hagler, J. R., & Jackson, C. G. (2001). Methods for marking insects: current techniques and future prospects. Annual Review of Entomology, 46, 511–43. https://doi.org/10.1146/annurev.ento.46.1.511
  • Heikkilä, M., Kaila, L., Mutanen, M., Peña, C., & Wahlberg, N. (2012). Cretaceous origin and repeated Tertiary diversification of the redefined butterflies. Proceedings of the Royal Society B: Biological Sciences, 279, 1093–1099. https://doi.org/10.1098/rspb.2011.1430
  • Kawahara, A. Y., Plotkin, D., Espeland, M., Meusemann, K., Toussaint, E. F., Donath, A. et al. (2019). Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences, 116, 22657–22663. https://doi.org/10.1073/pnas.1907847116
  • Kokko, H., & Jennions, M. D. (2008). Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 21, 919–948. https://doi.org/10.1111/j.1420-9101. 2008.01540.x
  • Labandeira, C. C., Johnson, K. R., & Wilf, P. (2002). Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences, 99, 2061–2066. https://doi.org/10.1073/pnas.042492999
  • Legal, L., Dorado, O., Machkour-M’Rabet, S., Leberger, R., Albre, J., Mariano, N. A. et al. (2015). Ecological constraints and distribution of the primitive and enigmatic endemic Mexican butterfly Baronia brevicornis. (Lepidoptera:Papilionidae). The Canadian Entomologist, 147, 71–88. https://doi.org/10.4039/tce.2014.24
  • León-Cortés, J. L., Pérez-Espinoza, F., Marín, L., & Molina-Martínez, A. (2004). Complex habitat requirements and conservation needs of the only extant Baroniinae swallowtail butterfly. Animal Conservation, 7, 241–250. https://doi.org/10.1017/S1367943004001283
  • Lovich, J. E., & Gibbons, J. W. (1990). Age at maturity influences adult sex ratio in the turtle Malaclemys terrapin. Oikos, 59, 126–134. https://doi.org/10.2307/3545132
  • Machkour-M’Rabet, S., Leberger, R., León-Cortés, J. L., Gers, C., & Legal, L. (2014). Population structure and genetic diversity of the only extant Baroninae swallowtail butterfly, Baronia brevicornis, revealed by ISSR markers. Journal of Insect Conservation, 18, 385–396. https://doi.org/10.1007/s10841-014-9647-3
  • Maldonado, B., Caballero, J., Delgado-Salinas, A., & Lira, R. (2013). Relationship between use value and ecological importance of floristic resources of seasonally dry tropical forest in the Balsas River Basin, México. Economic Botany, 67, 17–20. https://doi.org/10.1007/s12231-013-9222-y
  • McKinnon, J. S., & Pierotti, M. E. R. (2010). Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Molecular Ecology, 19, 5101–5125. https://doi.org/10.1111/j.1365-294X.2010.04846.x
  • Michán, L., Llorente-Bousquets, J., Martínez, A. L., & Castro, D. J. (2004). Breve historia de la taxonomía de Lepidoptera en México durante el siglo XX. In J. Llorente, O. Morrone, & I. Vargas (Eds), Biodiversidad, taxonomía y biogeografía de artrópodos de México: hacia una síntesis de su conocimiento (pp. 5–42). México D.F.: Facultad de Ciencias UNAM.
  • Molleman, F. (2018). Moving beyond phenology: New directions in the study of temporal dynamics of tropical insect communities. Current Science, 114, 982–986. https://doi.org/10.18520/CS/V114/I05/982-986
  • Nazari, V., Zakharov, E. V., & Sperling, F. A. (2007). Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Molecular Phylogenetics and Evolution, 42, 131–156. https://doi.org/10.1016/j.ympev. 2006.06.022
  • Pennington, R. T., Prado, D. E., & Pendry, C. A. (2000). Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27, 261–273. https://doi.org/10.1046/j.1365-2699.2000.00397.x
  • Puttick, A., Leon-Cortes, J., & Legal, L. (2018). Baronia brevicornis. The IUCN Red List of Threatened Species 2018. e.T2594A119581233. Retrieved on 03 May 2020. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2594A119581233.en
  • Ramos, R. R., & Freitas, A. V. L. (1999). Population biology and wing color variation in Heliconius erato Phyllis (Nymphalidae). Journal of the Lepidopterists Society, 53, 11–21.
  • Romo-Beltrán, A., Macías-Ordóñez, R., & Córdoba-Aguilar, A. (2009). Male dimorphism, territoriality and mating success in the tropical damselfly, Paraphlebia zoe Selys (Odonata: Megapodagrionidae). Ecology and Evolution, 23, 699–709. https://doi.org/10.1007/s10682-008-9265-1
  • Ruiz-Guzmán, G., Canales-Lazcano, J., Jiménez-Cortés, J. G., & Contreras-Garduño, J. (2013). Sexual dimorphism in immune response: Testing the hypothesis in an insect species with two male morphs. Journal of Insect Science, 20, 620–628. https://doi.org/10.1111/j.1744-7917.2012.01551.x
  • Simoes, M., & Baruch, Z. (1991). Responses to simulated herbivory and water stress in two tropical C4 grasses. Oecologia, 88, 173–180. https://doi.org/10.1007/bf00320808
  • Soberón, J., & Peterson, T. A. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.17161/bi.v2i0.4
  • Srygley, R. B., & Chai, P. (1990). Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia, 84, 491–499. https://doi.org/10.1007/bf00328165
  • Steifetten, Ø., & Dale, S. (2006). Viability of an endangered population of ortolan buntings: the effect of a skewed operational sex ratio. Biological Conservation, 132, 88–97. https://doi.org/10.1016/j.biocon.2006.03.016
  • Stiegel, S., Entling, M. H., & Mantilla-Contreras, J. (2017) Reading the leaves’ palm: leaf traits and herbivory along microclimatic gradient of forest layers. Plos One, 12, e0169741. https://doi.org/10.1371/journal.pone.0169741
  • Székely, T., Weissing, F. J., & Komdeur, J. (2014). Adult sex ratio variation: implications for breeding system evolution. Journal of Evolutionary Biology, 27, 1500–1512. https://doi.org/10.1111/jeb.12415
  • Torres, C., Osorio-Beristain, M., Mariano, N., & Legal, L. (2009). Sex-dependent seasonal feeding activity variations among two species of Nymphalidae (Lepidoptera) in the Mexican tropical dry forest. Annales de la Société Entomologique de France, 45, 265–274. https://doi.org/10.1080/00379271.2009.10697610
  • Van Dyck, H., & Wiklund, C. (2002). Seasonal buttery design: morphological plasticity among three developmental pathways relative to sex, fight and thermoregulation. Journal of Evolutionary Biology, 15, 216–225. https://doi.org/10.1046/j.1420-9101.2002.00384.x
  • Vázquez, L. (1987). Baronia brevicornis Salvin y sus formas (Lepidoptera: Papilionidae-Baroniinae). Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología, 58, 655–680.
  • Vázquez, L., & Pérez, H. (1961). Observaciones sobre la biología de Baronia brevicornis Salv. (Lepidoptera: Papilionidae, Baroniinae). Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 32, 295–311.
  • Vázquez, L., & Pérez, H. (1966). Nuevas observaciones sobre la biología de Baronia brevicornis Salv. Lepidoptera: Papilionidae, Baroniinae. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 37, 195–204.
  • Vlasanek, P., Hauck, D., & Konvicka, M. (2009). Adult sex ratio in the Parnassius mnemosyne butterfly: Effects of survival, migration, and weather. Israel Journal of Ecology and Evolution, 55, 233–252. https://doi.org/10.1560/IJEE.55.3.233
  • White, G. C., & Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study, 46, 120–138. https://doi.org/10.1080/00063659909477239
  • Wickman, P. O. (1992). Sexual selection and butterfly design —a comparative study. Evolution, 46, 1525–1536. https://doi.org/10.1111/j.1558-5646.1992.tb01142.x