Proyecto COVIDBENS. Seguimiento de la pandemia de COVID-19 en aguas residuales del área metropolitana de A Coruña

  1. Paloma Noelia Trigo-Tasende 1
  2. Manuel Vaamonde 2
  3. Kelly Conde-Pérez 1
  4. Ángel López-Oriona 2
  5. Elisa F. Álvarez 2
  6. Borja Freire 2
  7. Mohammed Nasser-Ali 1
  8. Inés Barbeito 2
  9. Soraya Rumbo-Feal 1
  10. Rubén Reif 3
  11. Bruno K. Rodiño 4
  12. José Parama 2
  13. Laura Tomás 5
  14. Pili Gallego 5
  15. Germán Bou 1
  16. Javier Tarrío-Saavedra 2
  17. Iago I. Corras 2
  18. David Posada 5
  19. Ignacio López de Ulibarri 2
  20. Juan A. Vallejo 1
  21. Susana Ladra 2
  22. Ricardo Cao 2
  23. Margarita Poza 1
  1. 1 Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña
  2. 2 Centro de Investigación de Tecnologías de la Información y Comunicación (CITIC), Universidad de A Coruña
  3. 3 Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS), Universidad de Santiago de Compostela
  4. 4 Bflow, Campus Vida, Santiago de Compostela
  5. 5 Centro de Investigación Biomédica (CINBIO), Universidad de Vigo
Aldizkaria:
Revista de Salud Ambiental

ISSN: 1697-2791

Argitalpen urtea: 2022

Zenbakien izenburua: XVI Congreso Español y VI Iberoamericano de Salud Ambiental y IV Jornada de la Asociación Española de Aerobiología

Alea: 22

Zenbakia: 0

Orrialdeak: 50-56

Mota: Artikulua

Beste argitalpen batzuk: Revista de Salud Ambiental

Erreferentzia bibliografikoak

  • Wu Y, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020; 5:434-435
  • How sewage could reveal true scale of coronavirus outbreak. Nature news, 3 April 2020. Disponible en: https://www.nature.com/articles/d41586-020-00973-x/
  • Fongaro G, et al. The presence of SARS-CoV-2 RNA in human sewage in Santa Catarina, Brazil, November 2019. Sci Total Environ. 2021; 778:146198
  • Chavarria-Miró G, et al. Time Evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Wastewater during the First Pandemic Wave of COVID-19 in the Metropolitan Area of Barcelona, Spain. Appl Environ Microbiol. 2021; 87:e02750-20
  • Lodder W, de Roda AM. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020; 5:533-534
  • Randazzo W, Cuevas-Ferrando E, Sanjuán R, Domingo-Calap P, Sánchez G.. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int J Hyg Environ Health. 2020; 230:113621
  • Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020; 181:115942
  • Roka E, et al. Ahead of the second wave: Early warning for COVID-19 by wastewater surveillance in Hungary. Sci Total Environ. 2021; 786:147398
  • Saguti F, et al. Surveillance of wastewater revealed peaks of SARS-CoV-2 preceding those of hospitalized patients with COVID-19. Water Res. 2021; 189:116620
  • Wannigama D.L, et al. Tracking COVID-19 with wastewater to understand asymptomatic transmission. Int J Infect Dis. 2021; 108:296-299
  • Agrawal S, Orschler L, Lackner S. Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in Southern Germany. Sci Rep. 2021; 11:5372
  • Rubio-Acero R, et al. Spatially resolved qualified sewage spot sampling to track SARS-CoV-2 dynamics in Munich - One year of experience. Sci Total Environ. 2021; 797:149031
  • Wurtzer S, Marechal, V, Mouchel JM, Moulin L. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv. 2020. Disponible en: https://www.medrxiv.org/content/10.1101/2020.04.12.20062679v1
  • Wu Y, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020; 5: 434-435
  • Nemudryi A, et al. Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Rep Med; 2020; 1:100098
  • La Rosa, G. et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci Total Environ. 2020; 736:139652
  • Haramoto E, Malla B, Thakali O, Kitajima M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci Total Environ. 2020; 737:140405
  • Hata A, Hara-Yamamura H, Meuchi Y, Imai S, Honda R. Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak. Sci Total Environ. 2021; 758: 143578
  • Martin J, et al. Tracking SARS-CoV-2 in Sewage: Evidence of Changes in Virus Variant Predominance during COVID-19 Pandemic. Viruses. 2020; 12:1144
  • Lundy L, et al. Making Waves: Collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making. Water Res. 2021; 199:117167
  • Kumar M, Joshi M, Shah AV, Srivastava V, Dave S. Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: a perspective of temporal variations in SARS-CoV-2-RNA in Ahmedabad, India. Sci Total Environ. 2021; 792:148367
  • Xu X, et al. The first case study of wastewater-based epidemiology of COVID-19 in Hong Kong. Sci Total Environ. 2021; 790:148000
  • Weidhaas J, et al. Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Sci. Total Environ. 2021; 775:145790
  • Pillay L, et al. Monitoring changes in COVID-19 infection using wastewater-based epidemiology: A South African perspective. Sci Total Environ. 2021; 786:147273
  • Furuse Y. Genomic sequencing effort for SARS-CoV-2 by country during the pandemic. Int. J. Infect. Dis. 2021; 103:305-307
  • Bar-Or I, et al. Detection of SARS-CoV-2 variants by genomic analysis of wastewater samples in Israel. Sci Total Environ. 2021; 789:148002
  • Crits-Christoph A, et al. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. mBio. 2021; 12:e02703-20
  • Dharmadhikari T, et al. High throughput sequencing based direct detection of SARS-CoV-2 fragments in wastewater of Pune, West India. Sci Total Environ. 2022. 807(Pt 3):151038
  • Herold M, et al. Genome Sequencing of SARS-CoV-2 Allows Monitoring of Variants of Concern through Wastewater. Water. 2021; 13:3018
  • Izquierdo-Lara R, et al. Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerg. Infect. Dis. 2021; 27:1405-1415
  • La Rosa G, et al. Key SARS-CoV-2 Mutations of Alpha, Gamma, and Eta Variants Detected in Urban Wastewaters in Italy by Long-Read Amplicon Sequencing Based on Nanopore Technology. Water. 2021; 13:2503
  • Rios G, et al. Monitoring SARS-CoV-2 variants alterations in Nice neighborhoods by wastewater nanopore sequencing. Lancet Reg. Heal. 2021; 10:100202
  • Jahn, K. et al. Detection and surveillance of SARS-CoV-2 genomic variants in wastewater. medRxiv, 2021. https://www.medrxiv.org/content/medrxiv/early/2021/07/15/2021.01.08.21249379.full.pdf
  • Rimoldi, S. G. et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ. 2020; 744:140911
  • Valieris R, Drummond RD, Defelicibus A, Dias-Neto E, Rosales RA, Tojal da Silva I. A mixture model for determining SARS-Cov-2 variant composition in pooled samples. Bioinformatics. 2022, to appear
  • Pollán M, et al. Prevalence of SARS–COV–2 in Spain (ENE–COVID): a nationwide, population– based seroepidemiological study. The Lancet. 2020; 396:535-544
  • Vallejo J A, et al. Modeling the number of people infected with SARS-COV-2 from wastewater viral load in Northwest Spain. Sci Total Environ. 2022; 811:152334.