Irregular periodic functionswhen Algebra met Analysis
- José Ángel Cid Araújo 1
- Adrián Fernández Tojo 2
- 1 Universidad de Vigo. Departamento de Matemáticas
- 2 Universidade de Santiago de Compostela. Departamento de Análise Matemática, Estatística e Optimización
Revista:
Materials matemàtics
ISSN: 1887-1097
Ano de publicación: 2022
Número: 0
Tipo: Artigo
Outras publicacións en: Materials matemàtics
Referencias bibliográficas
- Almira, J.M., Abu-Helaiel, K.F.: The theorems of Fréchet, Montel and Popoviciu and graphs of discontinuous polynomials. Gac. R. Soc. Mat.Esp. 18(2), 239–268 (2015)
- Almira, J.M., López-Moreno, A.J.: On solutions of the Fréchet functional equation. J. Math. Anal. Appl. 332(2), 1119–1133 (2007)
- Benson, D.: Music: A Mathematical Offering. Cambridge University Press (2006)
- Bohr, H.: Almost periodic functions. Courier Dover Publications (2018)
- Bordellès, O.: Bézout and Gauss, pp. 27–55. Springer London, London (2012). DOI 10.1007/978-1-4471-4096-2_2.
- Brzd¸ek, J.: Generalizations of some results concerning microperiodic mappings. Manuscripta Math. 121(2), 265–276 (2006)
- C. Morgan II, J.: Point Set Theory. Pure and applied mathematics. CRC Press (1990)
- Hamel, G.: Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: f(x + y) = f(x) + f(y). Math. Ann. 60(3), 459–462 (1905)
- Hewitt, E., Stromberg, K.: Real and abstract analysis: a modern treatment of the theory of functions of a real variable. Springer-Verlag (2013)
- Jones, F.B.: Connected and disconnected plane sets and the functional equation f(x) + f(y) = f(x + y). Bull. Amer. Math. Soc. 48, 115–120 (1942)
- Kern, R.: Multiply periodic real functions and their period sets. Manuscripta Math. 20, 153–175 (1977)
- Mirotin, A.R., Mirotin, E.A.: On sums and products of periodic functions. Real Anal. Exchange 34(2), 347–357 (2009)
- Niven, I.: Irrational Numbers, 5th edn. MAA (2005)
- Simmons, G.F.: Differential equations with applications and historical notes. McGraw-Hill Book Co., (1972)
- Székelyhidi., L.: Remark on the graph of additive functions. Aequat. Math. 90, 7–9 (2016)
- Verma, K.: A Primer on the Functional Equation: f(x + y) = f(x) + f(y). Resonance 22, 935–941 (2017)