Quality check of optical elements manufactured with in-mould hybrid integration technique

  1. CASTILLA GONZÁLEZ, PAU
Dirixida por:
  1. Josep Arasa Martí Director
  2. Cristina Garcia Favrot Co-director

Universidade de defensa: Universitat Politècnica de Catalunya (UPC)

Fecha de defensa: 05 de abril de 2019

Tribunal:
  1. Santiago Royo Royo Presidente/a
  2. Santiago Miguel Olaizola Izquierdo Secretario/a
  3. José Benito Vázquez Dorrío Vogal

Tipo: Tese

Teseo: 150174 DIALNET

Resumo

In the present industrial thesis has been developed and implemented with success a measurement strategy that consists of an optical test of validation of the optical functionality of photonic components in the same manufacturing line and in an optical control of complementary quality in the environment of laboratory. The strategy developed has been embodied in the European patent application 18382831.8. The optical validation test is able to validate the optical functionality of the photonic components from the measurement of the distribution of illumination in a close plane through the implementation of two merit functions. The first merit function is associated with the total radiant flux with its corresponding acceptability threshold. The second merit function is associated with the distribution of illumination and analyzes the eccentricity of the irradiance distribution as a discriminating element. The optical quality control, which allows detecting defects in the rejected photonic components at the production line, consists of two phases. The first phase, that measures angles less than 35°, is implemented by adding a mesh of holes to the assembly of the test in line, said mesh acts as a slope selector. The second phase, that measures angles greater than 35°, has been implemented by adding a parabolic reflector to the first phase control. In both phases, merit functions have been developed that facilitate the detection of defects. The first merit function analyzes the position of the spots due to the presence of the mesh. From inverse ray tracing generated by the measured directions, the convergence of the rays is determined. The difference between the vector position of said zone and the nominal position allows us to construct the first quality function. This function has been applied three times: one for the control of angles less than 35° and two for the control of angles greater than 35°, to the set of rays before interacting with the reflector and to the set of rays after said interaction. Likewise, based on the same base information, a second merit function has been applied based on comparing the values of the asymmetry presented by the director cosines (u, v), The second merit function analyzes the irradiance value of the spots. The objective of the merit function and its corresponding criterion is to determine the discrepancies in the irradiance level of the spots with respect to their nominal value. For the set of spots that do not meet the criterion, it is determined to which region they correspond thanks to the reverse ray tracing. To implement the measurement strategy for different photonic components, a laboratory equipment has been developed capable of implementing both the online optical test and the described quality controls. This equipment has been calibrated, both geometrically and energetically, and tests have been carried out on the repeatability of its measurements. The measurement strategy, based on the simulation, allows us to distinguish between the presence of a global displacement of the component, the presence of misalignment between the elements of the component and the presence of a local defect in the optics of the component. The equipment and the measurement strategy have been used together to validate the optical functionality of the first manufactured set of FOT component, which belongs to the telecommunications sector, developed by SnellOptics in consortium with QPO. Moreover, we have analyzed a component that due to its optical functionality has applications in the lighting environment has also been analyzed. Likewise, the success in the development of this industrial thesis of maximum interest has been reflected in the attendance to several international congresses (EOSAM, 2016), (SPIE Europe, 2018) and national (OPTOEL, 2017) as well as to patent application European 18382831.8