Picophytoplankton and carbon cycle on the northeastern shelf of the Gulf of Cádiz, SW Iberian Peninsula

  1. Mariana Ribas Ribas 1
  2. Cristina Sobrino 2
  3. Bibiana Debelius 1
  4. Luís M. Lubián
  5. Rocio Ponce 1
  6. Abelardo Gómez Parra 1
  7. Jesús M. Forja 1
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

  2. 2 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

Journal:
Scientia Marina

ISSN: 0214-8358

Year of publication: 2013

Volume: 77

Issue: 1

Pages: 49-62

Type: Article

DOI: 10.3989/SCIMAR.03732.27D DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Scientia Marina

Abstract

Four surveys (Jun’06 and Nov’06; Feb’07 and May’07) were carried out on the northeastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula) to relate the spatio-temporal distribution of the carbon cycle parameters (dissolved inorganic carbon and dissolved organic carbon) to picophytoplankton biomass and community composition. In addition, the net ecosystem production and the picophytoplankton contribution to the air-sea CO2 exchange process were investigated. The results showed that chlorophyll-a, carbon cycle parameters and picophytoplankton composition showed large seasonality, and the Guadalquivir Estuary plays an important role in the contribution of nutrient and suspended particular material over the year. Regarding picophytoplankton composition, the flow cytometry analysis demonstrated that Prochlorococcus and Synechococcus were the main populations in the studied area and their temporal and spatial distributions were complementary: the Prochlorococcus population showed its maximum concentration in May’07 and Jun’06 and in the surface oceanic water, whereas the Synechococcus population was at its maximum during Feb’07 and Nov’06, and off the Guadalquivir Estuary and Bay of Cádiz. In addition, a relationship between the studied parameters and the fugacity of CO2 was also observed, suggesting that primary production is an important factor in the regulation of this parameter in the studied area. The calculated carbon budget showed that the area acts as a carbon sink on an annual basis.

Bibliographic References

  • Agawin N.S.R., Agustí S. 1997. Abundance, frequency of dividing cells and growth rates of Synechococcus sp. (cyanobacteria) in the stratified Northwest Mediterranean Sea. J. Plankton Res. 19(11): 1599-1615.
  • Agawin N.S.R., Duarte C.M., Agustí S. 1998. Growth and abun-dance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature. Mar. Ecol. Prog. Ser. 170: 45-53.
  • Agawin N.S.R., Duarte C.M., Agustí S. 2000. Nutrient and tempera-ture control of the contribution of picoplankton to phytoplank-ton biomass and production. Limnol. Oceanogr. 45: 591-600.
  • Anfuso E., Ponce R., Castro G.C., Forja J.M. 2010. Coupling be-tween the thermohaline, chemical and biological fields during summer 2006 in the northeast continental shelf of the Gulf of Cádiz (SW Iberian Peninsula). Sci. Mar. 74S1: 47-56.
  • Anfuso E. 2011. Nutrients dynamic in the coastal shelf of the Gulf of Cádiz. Ph.D thesis, Univ. Cádiz, 136 pp.
  • Arrigo K.R., Van Dijken L. 2007. Interannual variation in air-sea CO2 flux in the Ross Sea, Antarctica: A model analysis. J. Geo-phys. Res. 112: C03020.
  • Azzaro M., La Ferla R., Maimone G., Monticelli L.S., Zaccone R., Civitarese G. 2011. Prokaryotic dynamics and heterotrophic metabolism in a deep convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit). Cont. Shelf Res., doi: 10.1016/j.csr.2011.07.011.
  • Bates N.R., Hansell D.A. 1999. A high resolution study of surface layer hydrographic and biogeochemical properties between Chesapeake Bay and Bermuda. Mar. Chem. 67(1-2): 1-16.
  • Benson B.B., Krause D.J. 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29(3): 620-632.
  • Cerino F., Bernardi Aubry F., Coppola J., La Ferla R., Maimone G., Socal G., Totti C. 2011. Spatial and temporal variability of pico-, nano- and microphytoplankton in the offshore waters of the southern Adriatic Sea (Mediterranean Sea). Cont. Shelf Res.doi: 10.1016/j.csr.2011.06.006.
  • Chiang K.-P., Kuo M.-C., Chang J., Wang R.-H., Gong G.-C. 2002. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton bio-mass. Cont. Shelf Res. 22: 3-13.
  • Del Valls T.A., Dickson A.G. 1998. The pH of buffers based on 2-amino-2-hydroxymethyl-1,3-propanediol (“tris”) in synthetic sea water. Deep-Sea Res. Part I 45, 1541-1554.
  • Dickson A.G. 1990. Standard potential of the (AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq)) cell and the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodynam. 22: 113-127.
  • Dickson A.G., Millero F. J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater me-dia. Deep-Sea Res. Part A 34: 1733-1743.
  • Donald K.M., Joint I., Rees A.P., Wookward E.M.S., Savidge G. 2001. Uptake of carbon, nitrogen and phosphorus by phyto-plankton along the 20ºW meridian in the NE Atlantic between 57.5ºN and 37ºN. Deep-Sea Res. Part II 48: 873-897.
  • DuRand M.D., Olson R.J., Chisholm S.W. 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series sta-tion in the Sargasso Sea. Deep-Sea Res. Part II 48: 1983-2003.
  • Echevarría F., Zabala L., Corzo A., Navarro G., Prieto L., Macías D. 2009. Spatial distribution of autotrophic picoplankton in relation to physical forcings: The Gulf of Cádiz, Strait of Gi-braltar and Alborán Sea case study. J. Plankton Res. 31(11): 1339-1351.
  • Furnas M., Mitchell A., Skuza M., Brodie J. 2005. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51: 253-265.
  • García-Fernández J.M., de Marsac N.T., Diez J. 2004. Streamlined regulation and gene loss as adaptive mechanisms in Prochloro-coccus for optimized nitrogen utilization in oligotrophic envi-ronments. Microbiol. Mol. Biol. Rev. 68(4): 630-638.
  • García-Lafuente J., Ruiz J. 2007. The Gulf of Cádiz pelagic ecosys-tem: A review. Prog. Oceanogr. 74(2-3): 228-251.
  • Gordon Jr. D.C. 1969. Examination of methods of particulate or-ganic carbon analysis. Deep-Sea Res. 16: 661-665.
  • Grasshoff K., Ehrhardt M., Kremling K. 1983. Methods of seawater analysis. Verlag Chemie, Weinheim, Germany, 419 pp.
  • Huertas I.E., Navarro G., Rodríguez-Gálvez S., Prieto L. 2005. The influence of phytoplankton biomass on the spatial distribu-tion of carbon dioxide in surface sea water of a coastal area of the Gulf of Cádiz (southwestern Spain). Can. J. Bot. 83(7): 929-940.
  • Huertas I.E., Navarro G., Rodríguez-Gálvez S., Lubián L.M. 2006. Temporal patterns of carbon dioxide in relation to hydrological conditions and primary production in the northeastern shelf of the Gulf of Cádiz (SW Spain). Deep-Sea Res. Part II 53(11-13): 1344-1362.
  • Jochem F. 1988. On the distribution and importance of picocyano-bacteria in a boreal inshore area (Kiel Bight, Western Baltic). J. Plankton Res. 10(5): 1009-1022.
  • Kristiansen S., Farbrot T., Naustvoll L. 2001. Spring bloom nutrient dynamics in the Oslofjord. Mar. Ecol. Prog. Ser. 219: 41-49.
  • La Ferla R., Azzaro M., Budillon G., Caroppo C., Decembrini F., Maimone G. 2010. Distribution to the prokaryotic biomass and community respiration in the main water masses of the South-ern Tyrrhenian Sea (June and December 2005). Adv. Oceanogr. Limnol. 1(2): 235-257.
  • Li W.K.W, Subba Rao D.V., Smith J.C., Cullen J.J. Irwin B. and Platt T. 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292-295.
  • Li W.K.W., Harrison W.G., Head E.J.H. 2006. Coherent assembly of phytoplankton communities in diverse temperate ocean eco-systems. Proc. R. Soc., B. 273: 1953-1960.
  • Loring D.H., Rantala R.T.T. 1991. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci. Rev. 32: 235-283.
  • Macías D., Navarro G., Bartual A., Echevarría F., Huertas I.E. 2009. Primary production in the Strait of Gibraltar: Carbon fixation rates in relation to hydrodynamic and phytoplankton dynamics. Est. Coast. Shelf Sci. 83: 197-210.
  • Mann K.H., Lazier J.R.N. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Blackwell Pub-lishing Ltd., Oxford, 469 pp.
  • Marie D., Simon N., Vaulot D. 2005. Phytoplankton cell counting by flow cytometry. In: Andersen R. (ed.), Algal culturing tech-niques. Academic Press (vol. 27), pp. 253-267.
  • Mehrbach C., Culberson C.H., Hawley J.E., Pytkowicz R.M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897-907.
  • Mura M.P., Agustí S., del Giorgio P.A., Gasol J.M., Vaqué D., Du-arte C.M. 1996. Loss-controlled phytoplankton production in nutrient-poor litoral waters of the NW Mediterranean: in situexperimental evidence. Mar. Ecol. Prog. Ser. 130: 213-219.
  • Navarro G., Ruiz J., 2006. Spatial and temporal variability of phy-toplankton in the Gulf of Cádiz through remote sensing images. Deep-Sea Res. Part II 53(11-13): 1241-1260.
  • Navarro G., Ruiz J., Huertas I. E., García C. M., Criado-Aldeanueva F., Echevarría F. 2006. Basin-scale structures governing the po-sition of the deep fluorescence maximum in the Gulf of Cádiz. Deep-Sea Res. Part II 53(11-13): 1261-1281.
  • Prieto L., Navarro G., Rodríguez-Gálvez S., Huertas I. E., Naranjo J. M., Ruiz, J. 2009. Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula). Cont. Shelf Res. 29: 2122-2137.
  • Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011a. Air-sea CO2fluxes in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Mar. Chem. 123: 56-66.
  • Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011b. Seasonal distribution of the inorganic carbon system and net ecosystem production in the north eastern shelf of the Gulf of Cádiz (south-west Iberian Peninsula). Cont. Shelf Res. 31: 1931-1942.
  • Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011c. Seasonal sea-surface CO2 fugacity in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). In: Komori S., McGillis W., Kurose R. (eds.), Gas transfer at water surfaces 2010. Kyoto University Press, pp. 394-405.
  • Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011d. Spatio-tem-poral variability of dissolved organic carbon and nitrogen in a coastal area affected by river input: the north eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Mar. Chem.126: 295-308.
  • Schlitzer R. 2009. Ocean Data View, http://odv.awi.de.
  • Sobrino C., Montero O., Lubián, L.M. 2004. UV-B radiation in-creases cell permeability and damages nitrogen incorporation mechanisms in Nannochloropsis gaditana. Aquat. Sci. 66: 421-429.
  • Suratman S., Weston K., Grennwook N., Sivyer D.B., Pearce D.J., Jickell T. 2010. High frequency measurements of dissolved inorganic and organic nutrients using instrumented moorings in the southern and central North Sea. Est. Coast. Shelf Sci. 87: 631-639.
  • Taylor A.H., Geider R.J., Gilbert F.J.H. 1997. Seasonal and lati-tudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modeling study. Mar. Ecol. Prog. Ser. 152: 51-66.
  • Vargas J.M., García-Lafuente J., Delgado J., Criado F. 2003. Sea-sonal and wind-induced variability of Sea Surface Temperature patterns in the Gulf of Cádiz. J. Mar. Syst. 38(3-4): 205-219.
  • Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97(C5): 7373-7382.
  • Weiss R.F. 1974. Carbon dioxide in water and seawater: the solubil-ity of a non-ideal gas. Mar. Chem. 2(3): 203-215.
  • Worden A.Z., Nolan J.K., Palenik B. 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr. 49(1): 168-179.
  • Yentsch C.S., Menzel D.W. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 101: 23-32.
  • Zubkov M.V., Fuchs B.M., Tarran G.A., Burkill P.H., Amann R. 2003. High rate of uptake of organic nitrogen compounds by Prochlorococcus Cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl. Environ. Microbiol. 69(2): 1299-1304.