On the special nature of survival data

  1. Jacobo de Uña-Álvarez 1
  2. Adrián Lago 1
  1. 1 Universidade de Vigo SiDOR
Revista:
BEIO, Boletín de Estadística e Investigación Operativa

ISSN: 1889-3805

Año de publicación: 2023

Volumen: 39

Número: 1

Tipo: Artículo

Otras publicaciones en: BEIO, Boletín de Estadística e Investigación Operativa

Resumen

The estimation of a survival function is most of the times a non-trivial issue due to the special nature of the sampling information. Survival data typically suffer from random censoring and/or truncation, as recognized in most textbooks on the topic. In this work we revisit these issues and discuss the difficulties that appear when handling censored and truncated survival data. Special attention is paid to situations in which the nonparametric maximum-likelihood estimator of the survival function may degenerate, be non-unique or even non-existing. Illustrative examples, simulation studies and real data applications are included. R code is provided.

Referencias bibliográficas

  • Breslow, N., and J. Crowley. 1974. “A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship.” The Annals of Statistics 2 (3): 437–53.
  • Cox, D. R. 1972. “Regression Models and Life-Tables.” Journal of the Royal Statistical Society. Series B (Methodological) 34 (2): 187–220.
  • Cox, D. R., and D. Oakes. 1984. Analysis of Survival Data. Chapman; Hall/CRC.
  • Csardi, G., and T. Nepusz. 2023. Igraph: Network Analysis and Visualization. Vol. Complex Systems. https://CRAN.R-project.org/package=igraph.
  • de Uña-Álvarez, J. 2020. “Nonparametric Estimation of the Cumulative Incidences of Competing Risks Under Double Truncation.” Biometrical Journal 62 (3): 852–67.
  • de Uña-Álvarez, J. 2023. “Testing for an Ignorable Sampling Bias Under Random Double Truncation” arXiv:2301.036 98.
  • de Uña-Álvarez, J., C. Moreira, and R. M. Crujeiras. 2021. The Statistical Analysis of Doubly Truncated Data: With Applications in r. Wiley.
  • Efron, B. 1967. “The Two-Sample Problem with Censored Data.” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 4: 831–52.
  • Efron, B., and V. Petrosian. 1999. “Nonparametric Methods for Doubly Truncated Data.” Journal of the American Statistical Association 94 (447): 824–34.
  • Fleming, T. R., and D. P. Harrington. 1981. Counting Processes and Survival Analysis. Wiley.
  • Gentleman, R., and A. Vandal. 2022. Icens: NPMLE for Censored and Truncated Data. https://bioconductor.org/packages/release/bioc/html/Icens.html.
  • Gómez, G., M. L. Calle, R. Oller, and K. Langohr. 2009. “Tutorial on Methods for Interval-Censored Data and Their Implementation in r.” Statistical Modelling 9 (4): 259–97.
  • Heuchenne, C., J. de Uña-Álvarez, and G. Laurent. 2020. “Estimation from cross-sectional data under a semiparametric truncation model.” Biometrika 107 (2): 449–65.
  • Kalbfleisch, J. D., and R. L. Prentice. 1980. The Statistical Analysis of Failure Time Data. Wiley.
  • Kaplan, E. L., and P. Meier. 1958. “Nonparametric Estimation from Incomplete Observations.” Journal of the American Statistical Association 53 (282): 457–81.
  • Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. (2nd Edition). Springer.
  • Klein, J. P., M. L. Moeschberger, and J. Yan. 2012. KMsurv: Data Sets from Klein and Moeschberger (1997), Survival Analysis. https://CRAN.R-project.org/package=KMsurv.
  • Lawless, J. F. 1982. Statistical Models and Methods for Lifetime Data. Wiley.
  • Lynden-Bell, D. 1971. “A method of allowing for known observational selection in small samples applied to 3CR quasars.” Monthly Notices of the Royal Astronomical Society 155 (1): 95–118.
  • Moreira, C., J. de Uña-Álvarez, and R. M. Crujeiras. 2022. DTDA: Doubly Truncated Data Analysis. https://CRAN.R-project.org/package=DTDA.
  • R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Satten, G. A., and S. Datta. 2001. “The Kaplan–Meier Estimator as an Inverse-Probability-of-Censoring Weighted Average.” The American Statistician 55 (3): 207–10.
  • Shen, P. S. 2010. “Nonparametric Analysis of Doubly Truncated Data.” Annals of the Institute of Statistical Mathematics 62 (5): 835–53.
  • Strzalkowska-Kominiak, E., and W. Stute. 2010. “On the Probability of Holes in Truncated Samples.” Journal of Statistical Planning and Inference 140 (6): 1519–28.
  • Sun, J. 2006. The Statistical Analysis of Interval-Censored Failure Time Data. Springer.
  • Therneau, T. M. 2022. Survival: Survival Analysis. https://CRAN.R-project.org/package=survival.
  • Turnbull, B. W. 1974. “Nonparametric Estimation of a Survivorship Function with Doubly Censored Data.” Journal of the American Statistical Association 69 (345): 169–73.
  • Turnbull, B. W. 1976. “The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data.” Journal of the Royal Statistical Society. Series B (Methodological) 38 (3): 290–95.
  • Wang, M. C. 1991. “Nonparametric Estimation from Cross-Sectional Survival Data.” Journal of the American Statistical Association 86 (413): 130–43.
  • Woodroofe, M. 1985. “Estimating a distribution function with truncated data.” The Annals of Statistics 13 (1): 163–77.
  • Xiao, J., and M. G. Hudgens. 2019. “On nonparametric maximum likelihood estimation with double truncation.” Biometrika 106 (4): 989–96.