Computer vision application for improved product traceability in the granite manufacturing industry

  1. Martínez, J. 1
  2. Rigueira, X. 2
  3. Araújo, M. 2
  4. Giráldez, E. 2
  5. Recamán, A. 3
  1. 1 Department of Applied Mathematics I, University of Vigo
  2. 2 Department of Natural Resources and Environmental Engineering, University of Vigo
  3. 3 Pavestone S.L.
Revista:
Materiales de construcción

ISSN: 0465-2746

Ano de publicación: 2023

Volume: 73

Número: 351

Tipo: Artigo

DOI: 10.3989/MC.2023.308922 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Materiales de construcción

Obxectivos de Desenvolvemento Sustentable

Resumo

La trazabilidad de los bloques de granito consiste en identificar cada bloque con un número finito de bandas de color, las cuales representan un código numérico. Dicho código tiene que ser leído varias veces durante el proceso de producción, pero la precisión de esta lectura se encuentra afectada por el factor humano, lo cual lleva a fallos en el sistema. Se presenta un sistema de visión artificial basado en la detección de colores y la decodificación de dichas bandas. El sistema hace uso de transformaciones entre espacios de color y varios intervalos para la selección de los mismos. Se implementan métodos de visión artificial, incluyendo la detección de contornos para la identificación de la posición de los colores. En último lugar, se analiza la geometría del patrón de colores para su decodificación. El algoritmo propuesto es entrenado en un set de 109 imágenes tomadas en diferentes condiciones medioambientales y validado en un set de 21 imágenes. Los resultados son prometedores, demostrando una eficacia del 75% en el proceso de validación. Por lo tanto, el sistema propuesto se considera de utilidad a la hora de incrementar la eficacia de la trazabilidad en la industria del granito.

Información de financiamento

Financiadores

Referencias bibliográficas

  • Dirección General de Política Energética y Minas. (2019) Estadística minera de España 2019. Retrieved from https://energia.gob.es/mineria/Estadistica/DatosBibliotecaConsumer/2019/estadistica mineraanual-2019.pdf.
  • Qi, C. (2020) Big data management in the mining industry. Int. J. Miner., Metall. Mater. 27 [2], 131-139.
  • Anh Vo, S.; Scanlan, J.; Mirowski, L.; Turner, P. (2018) Image processing for traceability: A system prototype for the Southern Rock Lobster (SRL) supply chain. Proceedings of the International Conference on Digital Image Computing: Techniques and Applications (DICTA), 1-8. Retrieved from https://eprints.utas.edu.au/29370.
  • Araújo, M.; Martínez, J.; Ordóñez, C.; Vilán, J.A. (2010) Identification of granite varieties from colour spectrum data. Sensors (Basel). 10 [9], 8572-8584.
  • Underwood, E.E. (1973) Quantitative stereology for microstructural analysis. microstructural analysis. Springer, Boston, M.A., (1973).
  • Underwood, E.E. (1986) Quantitative fractography. Applied metallography. Springer, Boston, M.A., (1986).
  • Russ, J.C.; Neal, F.B. (2016) The image processing handbook (7th ed.). CRC Press, Boca Raton, F.L., (2016).
  • Serra, J. (1982) lmage analysis and mathematical morphology. Academic Press. Cambridge, M.A., (1982).
  • Iglesias, C.; Martínez, J.; Taboada, J. (2018) Automated vision system for quality inspection of slate slabs. Comput. Ind. 99, 119-129.
  • Martínez, J.; López, M.; Matías, J.M.; Taboada, J. (2013) Classifying slate tile quality using automated learning techniques. Math. Comp. Model. 57 [7-8], 1716-1721.
  • López, M.; Martínez, J.; Matías, J.M.; Vilán, J.A.; Taboada, J. (2010) Application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs. Sensors (Basel) 10 [6], 5949-5961.
  • Ozkan, F.; Ulutas, B. (2016) Use of an eye-tracker to assess workers in ceramic tile surface defect detection. Proceedings of the International Conference on Control, Decision and Information Technologies (coDIT).
  • Hanzaei, S. H.; Afshar, A.; Barazandeh, F. (2017) Automatic detection and classification of the ceramic tiles’ Surface defects. Pattern. Recogni. 66, 174-189.
  • Sioma, A. (2020) Automated control of surface defects on ceramic tiles using 3D image analysis. Materials (Basel) 13 [5], 1250.
  • Hocenski, Z.; Matic, T.; Vidovic, I. (2016) Technology transfer of computer vision defect detection to ceramic tiles industry. Proceedings of the International Conference on Smart Systems and Technologies (SST). 301-305.
  • Samarawickrama, Y.C.; Wickramasinghe, C.D. (2017) Matlab based automated surface defect detection system for ceremic tiles using image processing. Proceedings of the National Conference on Technology and Management (NCTM). 34-39.
  • Avci D.; Sert, E. (2021) An effective Turkey marble classification system: Convolutional neural network with genetic algorithm -wavelet kernel- extreme learning machine. Colloq. Traitement. Signal. Imag. 38 [4], 1229-1235.
  • Panda, G.; Satapathy, S.C.; Biswal, B.; Ramesh, B. (2028) Microelectronics, electromagnetics and telecommunications. Proceedings of the International Conference on Micro-Electronics, Electromagnetics and Telecommunications (ICMEET). Retrieved from https://www.springerprofessional.de/en/microelectronics-electromagnetics-and-telecommunications.
  • López, M.; Martínez, J.; Matías, J.M.; Taboada, J.; Vilán, J.A. (2010) Functional classification of ornamental stone using machine learning techiniques. J. Comput. App. Math. 234 [4], 1338-1345.
  • Kang, H. (2006) Computational Color Technology (1st ed.). Spie Press, Bellingham, WA.
  • Bianconi, F.; Fernández, A.; González, E.; Saetta, S.A. (2013) Performance analysis of the colour descriptors for parquet sorting. Expert. Syst. Appl. 40 [5], 1636-1644.
  • Paschos, G. (2000) Fast colour texture recognition using chromaticity moments. Pattern Recognit. Lett. 21 [9], 837-841.
  • Xiong, N.N.; Shen, Y.; Yang, K.; Lee, C.; Wu. C. (2018) Color sensors and their applications based on real-time color image segmentation for cyber physical systems. EURASIP J Image Video Process. 2018, 23.
  • Ibraheem, N.A.; Hasan, N.M.; Khan, R.Z.; Mishra, P.K. (2012) Understanding color models: a review. ARPN J. Eng. Appl. Sci. 2 [3], 365-275. Retrieved from https://haralick.org/DV/understanding_color_models.pdf.
  • Sebastian, P.; Voon, Y.V.; Comley, R. (2010) Colour space effect on tracking in video surveillance. Int. J. Electr. Eng. Inform. 2 [4], 298-312.
  • Smith, A.R. (1978) Color gamut transform pairs. Proceedings of the Conference on Computer Graphics and Interactive Techniques ACM SIGGRAPH Computer Graphics. 12 [3], 12-19.
  • Roger, D.F. (2016) Procedural elements of computer graphics (1st ed.). McGraw-Hill, New York City, New York, (2016).
  • Bhatia, P.K. (2013) Computer graphics (3rd ed.), I.K. International, Daryaganj, New Delhi, Delhi, (2013).
  • Shapiro, L.; Stockman, G. (2001) Computer vision (1st ed.), 137-150. Prentice Hall., New York City, New York, (2001). Retrieved from https://theswissbay.ch/pdf/.
  • Nixon, M.; Aguado, A. (2019) Feature extraction and image processing for computer vision (1st ed.), 650. Academic Press, Cambridge, MA, (2019).
  • OpenCV: The OpenCV reference manual. 2.4.13.7 edn. OpenCV, (2014). OpenCV.
  • Suziki, S.; Abe, K. (1985) Topological structural analysis of digitalized binary images by border following. Comput. Vis Image Underst. 30 [1], 32-46.
  • Edwards, C.; Penney, D. (1982) Calculus and analytical geometry (1st ed.), 859-866. Prentice Hall, Upper Saddle River, NJ, (1982).
  • Ramer, U. (1972) An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1 [3], 244-256.
  • Douglas, D.H.; Peucker, T.H. (1973) Algorithms for the reduction of the number of points required to represent a digitalized line or its caricature. Cartographica. 10 [2], 112-122.
  • Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S. (2021) Resistance to artificial daylight of paints used in urban artworks. Influence of paint composition and substrate. Prog. Org. Coat. 154, 106180.
  • Kondo, N. (2009) Robotization in fruit grading system. Sens. Instrum. Food Qual. Saf. 3 [1], 81-87.
  • Burgus-Artizzu, X.P.; Ribeiro, A.; Guijarro, M.; Pajares, G. (2011) Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 75 [2], 337-346.
  • Carew, T.; Ghita, O.; Whelan, P.F. (2003) Exploring the effects of a factory-type test-bed on a painted slate defect detection system. Proceeding of the International Conference on Mechatronics (ICOM). 365-370. Retrived form https://doras.dcu.ie/18806/1/whelan_2003_126.pdf.
  • Andrew, W.; Hannuna, S.; Campbell, N.; Burghardt, T. (2016) Automatic individual Holstein Friesian cattle identification via selective local coat pattern matching in RGB-D imagery. Proceedings of the International Conference on Image Processing (ICIP) vol. August 2016. 484-488.
  • Ghita, O.; Whelan, P.F.; Carew, T.; Padmapriya, N. (2005) Quality grading of painted slates using texture analysis. Comput. Ind. 56 [8-9], 802-815.
  • Ghita, O.; Carew, T.; Whelan, P. (2006) A vision-based system for inspecting painted slated. Sens. Rev. 26 [2], 108-115.