Impact of artificial intelligence on assessment methods in primary and secondary educationSystematic literature review

  1. Miguel Martínez Comesaña
  2. Xurxo Rigueira-Díaz
  3. Ana Larrañaga-Janeiro
  4. Javier Martínez-Torres
  5. Iago Ocarranza-Prado
  6. Denis Kreibel
Revista:
Revista de psicodidáctica

ISSN: 1136-1034

Ano de publicación: 2023

Volume: 28

Número: 2

Páxinas: 93-103

Tipo: Artigo

DOI: 10.1016/J.PSICOD.2023.06.001 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Revista de psicodidáctica

Resumo

The educational sector can be enriched by the incorporation of artificial intelligence (AI) in various aspects. The field of artificial intelligence and its applications in the education sector give rise to a multidisciplinary field that brings together computer science, statistics, psychology and, of course, education. Within this context, this review aimed to synthesise existing research focused on provide improvements on primary/secondary student assessment using some AI tool. Thus, nine original research studies (641 participants), published between 2010 and 2023, met the inclusion criteria defined in this systematic literature review. The main contributions of the application of AI in the assessment of students at these lower educational levels focus on predicting their performance, automating and making evaluations more objective by means of neural networks or natural language processing, the use of educational robots to analyse their learning process, and the detection of specific factors that make classes more attractive. This review shows the possibilities and already existing uses that AI can bring to education, specifically in the evaluation of student performance at the primary and secondary levels.

Referencias bibliográficas

  • Alam, A. (2021). Possibilities and apprehensions in the landscape of artificial intelligence in education. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA), 1–8. https://doi.org/10.1109/ICCICA52458.2021.9697272
  • Alonso, C., Martínez, I., Caballero, R., Freire, M., y Fernández, B. (2020). Predicting students’ knowledge after playing a serious game based on learning analytics data: A case study. Journal of Computer Assisted Learning, 36(3), 350–358. https://doi.org/10.1111/jcal.12405
  • Anjos, O., Martinez, M., Caldeira, I., Pedro, S., Eguía, P., y Canas, S. (2020). Application of functional data analysis and FTIR-ATR spectroscopy to discriminate wine spirits ageing technologies. Mathematics, 8, 896. https://doi.org/10.3390/math8060896
  • Aslam, N., Khan, I., Alamri, L., y Almuslim, R. (2021). An improved early student’s academic performance prediction using deep learning. International Journal of Emerging Technologies in Learning (IJET), 16(12), 108–122, https://www.learntechlib.org/p/220061.
  • Baepler, P., y Murdoch, C. J. (2010). Academic analytics and data mining in higher education. International Journal for the Scholarship of Teaching and Learning, 4(2), 108–126. https://doi.org/10.20429/ijsotl.2010.040217
  • Beaulac, C., y Rosenthal, J. S. (2019). Predicting university students’ academic success and major using random forests. Research in Higher Education, 60(7), 1048–1064. https://doi.org/10.1007/s11162-019-09546-y
  • Bonam, B., Piazentin, L., y Possa, A. D. (2020). Educación, big data e inteligencia artificial: Metodologías mixtas en plataformas digitales. Comunicar: Revista Científica Iberoamericana de Comunicación y Educación, 28(65), 43–52.
  • Caratozzolo, P., Rodriguez, J., y Alvarez, A. (2022). Natural language processing for learning assessment in STEM 2022 IEEE. pp. 1549–1554. Global Engineering Education Conference (EDUCON). https://doi.org/10.1109/EDUCON52537.2022.9766717
  • Chassignol, M., Khoroshavin, A., Klimova, A., y Bilyatdinova, A. (2018). Artificial intelligence trends in education: A narrative overview. Procedia Computer Science, 136, 16–24. https://doi.org/10.1016/j.procs.2018.08.233
  • Chen, L., Chen, P., y Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS. 2020.2988510
  • Chen, X., Xie, H., Zou, D., y Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1(August), 100002. https://doi.org/10.1016/j.caeai.2020.100002
  • Chen, X., Zou, D., Xie, H., Cheng, G., Liu, C., & Two decades of artificial intelligence in education: Contributors, collaborations, research topics, challenges, and future directions. (2022). Educational Technology & Society, 25(1), 28–47.
  • Cruz, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., y Rosa, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081. https://doi.org/10.1016/j.heliyon.2020.e04081
  • Denes, G. (2023). A case study of using AI for General Certificate of Secondary Education (GCSE) grade prediction in a selective independent school in England. Computers and Education: Artificial Intelligence, 4, 100129. https://doi.org/10.1016/j.caeai.2023.100129
  • Dowell, N., Lin, Y., Godfrey, A., Brooks, C., & Promoting inclusivity through time-dynamic discourse analysis in digitally-mediated collaborative learning. (2019). International Conference on Artificial Intelligence in Education, 207–219. https://doi.org/10.1007/978-3-030-23204-7 18
  • Gough, D., Thomas, J., y Oliver, S. (2017). An introduction to systematic reviews. SAGE Publications Ltd., http://digital.casalini.it/9781473968219.
  • Hans, V. B., y Crasta, S. J. (2019). Digitalization in the 21st Century: Impact on learning and doing. Journal of Global Economy, 15(1), 12–23.
  • Hsu, T.-C., Abelson, H., Lao, N., Tseng, Y.-H., y Lin, Y.-T. (2021). Behavioral-pattern exploration and development of an instructional tool for young children to learn AI. Computers and Education: Artificial Intelligence, 2, 100012. https://doi.org/10.1016/j.caeai.2021.100012
  • Hwang, G. J., Xie, H., Wah, B. W., y Gaˇsevi ´c, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 1–5. https://doi.org/10.1016/j.caeai.2020.100001
  • Jabeur, S. B., Gharib, C., Mefteh, S., y Arfi, W. B. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change, 166, 120658. https://doi.org/10.1016/j.techfore.2021.120658
  • Kaelbling, L. P., y Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.
  • Kahraman, H. T., Sagiroglu, S., y Colak, I. (2010). Development of adaptive and intelligent web-based educational systems. 2010 4th International Conference on Application of Information and Communication Technologies, 1–5.
  • Kaya, I. E. (2019). Artificial neural networks as a decision support tool in curriculum development. International Journal on Artificial Intelligence Tools, 28(04), 1940004. https://doi.org/10.1142/S0218213019400049
  • Knox, J. (2020). Artificial intelligence and education in China. Learning. Media and Technology, 45(3), 298–311. https://doi.org/10.1080/17439884.2020.1754236
  • Kuleto, V., Ilic, M., Dumangiu, M., Rankovic, M., Martins, O. M. D., Paun, D., y Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), 10424. https://doi.org/10.3390/su131810424
  • Lamb, R., Neumann, K., y Linder, K. A. (2022). Real-time prediction of science student learning outcomes using machine learning classification of hemodynamics during virtual reality and online learning sessions. Computers and Education: Artificial Intelligence, 3, 100078. https://doi.org/10.1016/j.caeai.2022.100078
  • Luckin, R., Holmes, W., Griffiths, M., y Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in intelligence unleashed.
  • Luckin, R., y Cukurova, Y. M. (2019). Designing educational technologies in the age of AI: A learning sciences-driven approach. British Journal of Educational Technology, 50(6), 2824–2838. https://doi.org/10.1111/bjet.12861
  • Martínez, M., Eguía, P., Martínez, J., Febrero, L., y Granada, E. (2022). Optimisation of thermal comfort and indoor air quality estimations applied to in-use buildings combining NSGA-III and XGBoost. Sustainable Cities and Society, 80, 103723. https://doi.org/10.1016/j.scs.2022.103723
  • Martínez, M., Ogando, A., Troncoso, F., López, J., Febrero, L., y Granada, E. (2021). Use of optimised MLP neural networks for spatiotemporal estimation of indoor environmental conditions of existing buildings. Building and Environment, 205, 108243. https://doi.org/10.1016/j.buildenv.2021.108243
  • Martínez, Á., Cruz, A., y Fernández, J. A. (2019). Teaching machine learning in robotics interactively: the case of reinforcement learning with Lego ® Mindstorms. Interactive Learning Environments, 27(3), 293–306. https://doi.org/10.1080/10494820.2018.1525411
  • Martínez, J., Pastor, J., Sancho, J., McNabola, A., Martínez, M., y Gallagher, J. (2020). A functional data analysis approach for the detection of air pollution episodes and outliers: A case study in Dublin. Ireland. Mathematics, 8(2). https://doi.org/10.3390/math8020225
  • Merceron, A., y Yacef, K. (2004). Mining student data captured from a web-based tutoring tool: Initial exploration and results. Journal of Interactive Learning Research, 15(4), 319–346.
  • Mostow, J., y Beck, J. (2006). Some useful tactics to modify, map and mine data from intelligent tutors. Natural Language Engineering, 12(2), 195–208. https://doi.org/10.1017/S1351324906004153
  • Okewu, E., Adewole, P., Misra, S., Maskeliunas, R., y Damasevicius, R. (2021). Artificial neural networks for educational data mining in higher education: A systematic literature review. Applied Artificial Intelligence, 35(13), 983–1021. https://doi.org/10.1080/08839514.2021.1922847
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., . . . Moher, D. (2021a). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sis- temáticas. Revista Espa˜nola de Cardiología (English Edition), 74(9), 790-799. https://doi.org/10.1016/j.rec.2021.07.010.
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., . . . Moher, D. (2021b). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1136/bmj.n71.
  • Pivetti, M., Di Battista, S., Agatolio, F., Simaku, B., Moro, M., y Menegatti, E. (2020). Educational robotics for children with neurodevelop-mental disorders: A systematic review. Heliyon, 6(10), e05160. https://doi.org/10.1016/j.heliyon.2020.e05160
  • Richardson, M., y Clesham, R. (2021). Rise of the machines? The evolving role of Artificial Intelligence (AI) technologies in high stakes assessment. London Review of Education, 19(1), 1–13.
  • Rigueira, X., Araújo, M., Martínez, J., García, P. J., y Ocarranza, I. (2022). Functional data analysis for the detection of outliers and study of the effects of the COVID-19 pandemic on air quality: A case study in Gijón. Spain. Mathematics, 10(14), 2374. https://doi.org/10.3390/math10142374
  • Romero, C., y Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems. Man and Cybernetics Part C: Applications and Reviews, 40(6), 601–618. https://doi.org/10.1109/TSMCC. 2010.2053532
  • Romero, C., Ventura, S., y García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers and Education, 51(1), 368–384. https://doi.org/10.1016/j.compedu.2007.05.016
  • Romero, C., Zafra, A., Luna, J. M., y Ventura, S. (2013). Association rule mining using genetic programming to provide feedback to instructors from multiple-choice quiz data. Expert Systems, 30(2), 162–172. https://doi.org/10.1111/j.1468-0394.2012.00627.x
  • Samoilescu, R., Dascalu, M., Sirbu, M., Trausan, S., Crossley, S. A. (2019). Modeling collaboration in online conversations using time series analysis and dialogism. (2019). International Conference on Artificial Intelligence in Education, 458–468. https://doi.org/10.1007/978-3-030-23204-7 38
  • Santos, O. C., y Boticario, J. G. (2014). Involving users to improve the collaborative logical framework. The Scientific World Journal, 2014, 893525. https://doi.org/10.1155/2014/893525
  • Sarker, I. H. (2021a). Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2(6), 1–20. https://doi.org/10.1007/s42979-021-00815-1
  • Sarker, I. H. (2021b). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 1–21. https://doi.org/10.1007/s42979-021-00592-x
  • Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science, 3(2), 1–20. https://doi.org/10.1007/s42979-022-01043-x
  • Thanh, N. H., y Tuan, B. A. (2021). We are using artificial intelligence in assessing students’ achievement at high schools: A case study in mathematics. (pp. 139–149). Proceedings of the 5th Asia Pacific International Modern Sciences Congress.
  • Thomas, C., Puneeth, K. A., Swaroop, V., y Jayagopi, S. D. B. (2022). Automatic prediction of presentation style and student engagement from videos. Computers and Education: Artificial Intelligence, 3, 100079. https://doi.org/10.1016/j.caeai.2022.100079
  • Tlili, A., Chang, M., Moon, J., Liu, Z., Burgos, D., Chen, N. S., y Kinshuk. (2021). A systematic literature review of empirical studies on learning analytics in educational games. International Journal of Interactive Multimedia and Artificial Intelligence, 7(2), 250–261. https://doi.org/10.9781/ijimai.2021.03.003
  • Troncoso, F., Martínez, M., Ogando, A., López, J., Eguía, P., y Febrero, L. (2022). IoT-based platform for automated IEQ spatio-temporal analysis in buildings using machine learning techniques. Automation in Construction, 139, 104261.
  • Tuyishimire, E., Mabuto, W., Gatabazi, P., y Bayisingize, S. (2022). Detecting learning patterns in tertiary education using k-means clustering. Information, 13(2), 94. https://doi.org/10.3390/info13020094
  • Van Laar, E., Van Deursen, A. J. A. M., Van Dijk, J. A. G. M., y de Haan, J. (2017). The relation between 21st-century skills and digital skills: A systematic literature review. Computers in Human Behavior, 72, 577–588. https://doi.org/10.1016/j.chb.2017.03.010
  • Ventura, M. D. (2017). Creating inspiring learning environments by means of digital technologies: A case study of the effectiveness of WhatsApp in music education. In E-Learning, E-education and online training (pp. 36–45). Springer.
  • Ventura, M. D. (2018). Twitter as a music education tool to enhance the learning process: Conversation analysis. En L. Deng, W. W. K. Ma, y C. W. R. Fong (Eds.), New media for educational change (pp. 81–88). Springer Singapore.
  • Wiley, J., Hastings, P., Blaum, D., Jaeger, A. J., Hughes, S., Wallace, P., Griffin, T. D., y Britt, M. A. (2017). Different approaches to assessing the quality of explanations following a multiple-document inquiry activity in science. International Journal of Artificial Intelligence in Education, 27(4), 758–790. https://doi.org/10.1007/s40593-017-0138-z
  • Xu, X., Wang, J., Peng, H., y Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166–173. https://doi.org/10.1016/j.chb.2019.04.015
  • Yunanto, A. A., Herumurti, D., Rochimah, S., y Kuswardayan, I. (2019). English education game using non-player character based on natural language processing. Procedia Computer Science, 161, 502–508. https://doi.org/10.1016/j.procs.2019.11.158
  • Zadeh, L. A. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751–2779. https://doi.org/10.1016/j.ins.2008.02.012
  • Zafari, M., Sadeghi, A., Choi, S.-M., y Esmaeily, A. (2021). A practical model for the evaluation of high school student performance based on machine learning. Applied Sciences, 11(23). https://doi.org/10.3390/app112311534
  • Zhang, K., y Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025
  • Zhang, R., y Zou, D. (2020). Types, purposes, and effectiveness of state-of-the-art technologies for second and foreign language learning. Computer Assisted Language Learning, 1–47. https://doi.org/10.1080/09588221.2020.1744666
  • Zhang, Z., Yilmaz, L., y Liu, B. (2021). A Critical review of inductive logic programming techniques for explainable AI, 1–17, arXiv. https://doi.org/10.48550/ARXIV.2112.15319