La investigación gallega en la aplicación de la tecnología láser para la limpieza de patrimonio cultural materialestrategias del pasado y del futuro

  1. Pozo-Antonio, Santiago 1
  2. Rivas Brea, Teresa 1
  3. Ramil , Alberto 2
  4. López Díaz, Ana J. 2
  1. 1 GESSMin, CINTECX, Departamento de Enxeñaría dos Recursos Naturais e Medio Ambiente, Universidade de Vigo, España.
  2. 2 LAIL, CIT, Departamento de Enxeñaría Naval e Industrial, Universidade da Coruña, Ferrol, España
Revista:
Cadernos do Laboratorio Xeolóxico de Laxe: Revista de xeoloxía galega e do hercínico peninsular

ISSN: 0213-4497

Ano de publicación: 2023

Número: 45

Páxinas: 17-31

Tipo: Artigo

DOI: 10.17979/CADLAXE.2023.45.0.9457 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Cadernos do Laboratorio Xeolóxico de Laxe: Revista de xeoloxía galega e do hercínico peninsular

Obxectivos de Desenvolvemento Sustentable

Resumo

La limpieza de elementos del patrimonio cultural es fundamental para asegurar la durabilidad y transmisión de nuestro legado cultural y artístico. En Galicia, la importancia de nuestro patrimonio construido en roca es reflejo de la habilidad de nuestros maestros y artesanos y es un símbolo de nuestra fortaleza como comunidad. La dificultad que entraña la limpieza de rocas poliminerálicas como son los granitos, esquistos, etc. empleadas en estas obras justifica la necesidad de realizar investigaciones pormenorizadas sobre la eficacia de diversos métodos de limpieza considerando tanto el grado de extracción de la sustancia indeseada (costras, grafiti, colonización biológica, etc.) como los efectos colaterales que puedan ocasionar dichas limpiezas como por ejemplo extracción de minerales, cambios cromáticos, etc. Es por ello, por lo que un grupo de investigadores de la Universidade de Vigo y la Universidade da Coruña trabajan conjuntamente desde hace 13 años para optimizar la aplicación de la tecnología láser como herramienta de limpieza de estas rocas. Este método físico permite alcanzar limpiezas de un modo selectivo, gradual y respetuoso con el medio ambiente y la salud de los trabajadores. Se posibilita por lo tanto un método de limpieza sostenible. Además de la utilización innovadora del láser para limpiar rocas poliminerálicas del patrimonio, este grupo de investigación gallego realizó avances en este ámbito con la aplicación simultánea de longitudes de ondas (infrarroja-1064 nm y ultravioleta- 355 nm) y la combinación secuencial de procedimientos de limpieza láser, químicos y mecánicos. Estas estrategias han permitido alcanzar altos niveles de extracción y reducir los efectos colaterales gracias a la reducción de los niveles de fluencia aplicados.

Referencias bibliográficas

  • Agulló-Rueda, F., 2010. Espectroscopía Raman. En Egido, M. D. y Calderón, T. (eds.). La Ciencia y el Arte. Ciencias experimentales y conservación del Patrimonio Histórico. 117-125. IPHE, Ministerio de Cultura de España, Madrid. http://www.calameo.com/read/00007533584c6b757a9fb
  • Asmus, J.F., Murphy, C.G., Munk,W.H., 1974. En: Wuerker, R.F. (Ed.), Studies on the Interaction of Laser Radiation With Art Artifacts. Annu. Tech. Symp., International Society for Optics and Photonics, pp. 19–30 http://dx.doi.org/10.1117/12.953831
  • Barreiro, P., González, P., Pozo-Antonio, J.S., 2019. IR irradiation to remove a sub-aerial biofilm from granitic stones using two different laser systems: An Nd: YAG (1064 nm) and an Er:YAG (2940 nm). Science of the Total Environment 688, 632-641. https://doi.org/10.1016/j.scitotenv.2019.06.306
  • Barreiro, P., Andreotti, A., Colombini, M. P, González, P., Pozo-Antonio, J.S.. 2020. Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal. Coatings 10(3), 196. https://doi.org/10.3390/coatings10030196
  • Bromblet, P., Laboure, M., Orial, G., 2003. Diversity of the cleaning procedures including laser for the restoration of carved portals in France over the last 10 years. Journal of Cultural Heritage 4, 17S–26S. https://doi.org/10.1016/S1296-2074(02)01222-0
  • Chapoulie, R., Cazenave, S., Duttine,M., 2008. Laser cleaning of historical limestone buildings in Bordeaux appraisal using cathodoluminescence and electron paramagnetic resonance. Environmental Science and Pollutuin Research 15, 237–243. https://doi.org/10.1065/espr2007.07.436
  • Cooper, M.I., Emmony, D.C., Larson, J., 1995. Characterization of laser cleaning of limestone. Optics & Laser Technology 27, 69–73. http://dx.doi.org/10.1016/0030-3992(95)93962-Q
  • Domingo, C., 2011. Técnicas de espectroscopía Raman aplicadas en conservación. En Egido, M. D. y Juanes, D. (eds.). La Ciencia y el Arte III. Madrid: IPCE, MCU.
  • ESCRBBCCG web, acceso el 24 de diciembre del 2022. https://escolaconservacion.gal/?lang=es
  • Fiorucci, M.P., López, A.J., Ramil, A., Pozo S., Rivas, T., 2013. Optimization of graffiti removal on natural stone by means of high repetition rate UV laser. Applied Surface Science 278, 268–272. https://doi.org/10.1016/j.apsusc.2012.10.092
  • Fotakis, C., Anglos, D., Zafiropoulos, V., Georgiou, S., Tornari, V., 2006. Lasers in the Preservation of Cultural Heritage: Principles and Applications. London: Taylor & Francis.
  • GESSMin web, acceso el 24 diciembre del 2022. http://gessmin.webs.uvigo.es/gl/
  • Gomes, V., Dionisio, A., Pozo-Antonio, J.S., Rivas, T., Ramil., 2018. Mechanical and laser cleaning of spray graffiti paints on a granite subjected to a SO2-rich atmosphere. Construction and building materials 188, 621–632. https://doi.org/10.1016/j.conbuildmat.2018.08.130
  • LACONA web, acceso 24 de diciembre 2022. http://www.lacona13.eu/
  • LAIL web, acceso el 24 diciembre del 2022. https://cit.udc.es/grupos-investigacion-cit/laboratorio-aplicaciones-industriales-laser/
  • López, A.J., Lamas, J., Pozo-Antonio, J.S., Rivas, T., Ramil, A., 2020. Development of processing strategies for 3D controlled laser ablation: Application to the cleaning of stonework surfaces. Optics and Lasers in Engineering 126, 105897. https://doi.org/10.1016/j.optlaseng.2019.105897
  • Maravelaki-Kalaitzaki, P., Anglos, D., Kilikoglou, V., Zafiropulos, V., 2001. Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 56, 887–903. http://dx.doi.org/10.1016/S0584-8547(01)00226-9
  • Moropoulou, A., Kefalonitou, S., 2002. Efficiency and counter effects of cleaning treatment on limestone surfaces - investigation on the Corfu Venetian Fortress. Building and Environment 37, 1181–1191. http://dx.doi.org/10.1016/S0360-1323(01)00059-2
  • Nello Carrara web, acceso 24 de diciembre 2022. http://www.ifac.cnr.it/
  • Osticioli, I.,Mascalchi, M., Pinna, D., Siano, S., 2014. Removal of Verrucaria nigrescens from Carrara marble artefacts using Nd:YAG lasers: comparison among different pulse durations and wavelengths. Applied Physics A - Materials Science & Processing 118, 1517–1526. http://dx.doi.org/10.1007/s00339-014-8933-y
  • Oujja, M., Rebollar, E., Castillejo, M., Domingo, C., Cirujano, C., Guerra-Librero, F., 2005. Laser cleaning of terracotta decorations of the portal of Palos of the Cathedral of Seville. Journal of Cultural Heritage 6, 321–327. http://dx.doi.org/10.1016/j.culher.2005.05.001
  • PHS web, acceso 24 de diciembre 2022. https://www.iesl.forth.gr/en/research/photonics-heritage-science
  • Potgieter-Vermaak, S.S., Godoi, R.H.M., Van Grieken, R., Potgieter, J.H., Oujja, M., Castillejo, M., 2005. Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 61, 2460–2467. http://dx.doi.org/10.1016/j.saa.2004.09.010
  • Pouli, P., Fotakis, C., Hermosin, B., Saiz-Jimenez, C., Domingo, C., Oujja, M., Castillejo, M., 2008. The laser-induced discoloration of stonework; a comparative study on its origins and remedies. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 71, 932–945. http://dx.doi.org/10.1016/j.saa.2008.02.031
  • Pouli, P., Oujja, M., Castillejo, M., 2011. Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects. Applied Physics A - Materials Science & Processing 106, 447–464. http://dx.doi.org/10.1007/s00339-011-6696-2
  • Pozo, S., Barreiro, P., Rivas, T., Gonzalez, P., Fiorucci, M.P., 2014. Effectiveness and harmful effects of sulphated black crust removal from granite using Nd:YAG nanosecond pulsed laser. Applied Surface Science 302, 309-313. https://doi.org/10.1016/j.apsusc.2013.10.129
  • Pozo-Antonio, J.S., Fiorucci, M.P. Ramil, A., López-Díaz, AJ., Rivas, T., 2015. Evaluation of the effectiveness of laser crust removal on granites by means of hyperspectral imaging techniques. Applied Surface Science 347, 832–838. https://doi.org/10.1016/j.apsusc.2015.04.182
  • Pozo-Antonio, J.S., Rivas, T., Fiorucci, M.P., López A.J., Ramil, A., 2016a. Effectiveness and harmfulness evaluation of graffiti cleaning by mechanical, chemical and laser procedures on granite. Microchemical Journal 125, 1–9. https://doi.org/10.1016/j.microc.2015.10.040
  • Pozo-Antonio, J.S., Ramil, A., Fiorucci, M.P., López, A.J., Rivas, T., 2016b. The use of hyperspectral imaging technique to detect the most suitable graffiti-cleaning procedure. Color Research and Application. https://doi.org/10.1002/col.22032
  • Pozo-Antonio, J.S., Fiorucci, M. P., Rivas, T., López, A.J., Ramil, A., Barral, D., 2016c. Suitability of hyperspectral imaging technique to evaluate the effectiveness of the cleaning of a crustose lichen developed on granite. Applied Physics A -materials science & processing, 122, 100. https://doi.org/10.1007/s00339-016-9634-5
  • Pozo-Antonio, J.S., Ramil, A, Rivas, T., López, A.J., Fiorucci, M.P., 2016d. Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite. Construction and Building Materials 112, 682–690. https://doi.org/10.1016/j.conbuildmat.2016.02.195
  • Pozo-Antonio, J.S., Fiorucci,M.P., Ramil, A., Rivas, T., López, A.J., 2016e. Hyperspectral imaging as a non destructive technique to control the laser cleaning of graffiti on granite. Journal of nondestructive evaluation 35, 44. https://doi.org/10.1007/s10921-016-0361-9
  • Pozo-Antonio, J.S., Rivas, T., Fiorucci,M.P., Ramil, A., López, A.J., 2016f. Effectiveness of granite cleaning procedures in cultural heritage: a review. Science of the Total Environment 571, 1017–1028. https://doi.org/10.1016/j.scitotenv.2016.07.090
  • Pozo-Antonio, J.S., Papanikolaou, A., Melessanaki, K., Rivas, T., Pouli, P., 2018. Laser assisted removal of graffiti from granite: advantages of the simultaneous combination of two wavelengths. Coatings 8, 4 124. https://doi.org/10.3390/coatings8040124
  • Pozo-Antonio, J.S., Papanikolaou, A., Philippidis, A., Melessanaki, K., Pouli, P., Rivas, T., 2019a. Cleaning of gypsum black crusts on granite using a dual wavelength Nd:YAG laser. Construction and Building Materials 226, 721–733. https://doi.org/10.1016/j.conbuildmat.2019.07.298
  • Pozo-Antonio, J.S., Barreiro, P., González, P., Paz-Bermúdez, G., 2019b. Nd:YAG and Er:YAG laser cleaning to remove Circinaria hoffmanniana (Lichenes, Ascomycota) from schist located in the Côa Valley Archaeological Park. International Biodeterioration and Biodegradation, 144, art. no. 104748. https://doi.org/10.1016/j.ibiod.2021.105276
  • Pozo-Antonio, J.S., Barreiro, P., Paz-Bermúdez, G., González, P., Batarda, A.P, 2021a. Effectiveness and durability of chemical-and laser-based cleanings of lichen mosaics on schists at archaeological sites. International Biodeterioration and Biodegradation 163, 105276. https://doi.org/10.1016/j.ibiod.2021.105276
  • Pozo-Antonio, J.S., Rivas, T., López de Silanes, M.E., Ramil A., López, A.J., 2021b. Dual combination of cleaning methods (scalpel, biocide, laser) to ensanche lichen removal from granite. International Biodeterioration and Biodegradation 168, 105373. https://doi.org/10.1016/j.ibiod.2021.105276
  • Pozo-Antonio, J.S., Antonio Fontán, N. 2021c. Aplicación de un láser Nd:YAG para retirar grafiti de la caliza Lioz: influencia de los parámetros láser (longitud de onda, fluencia y número de pulsos) y la composición del grafiti. Cadernos do Laboratorio Xeoloxico de Laxe 43, 17–40. https://doi.org/10.17979/cadlaxe.2021.43.0.8751
  • Ramil, A., Pozo-Antonio, J.S., Fiorucci, M. P., López, A.J., Rivas, T., 2017. Detection of the optimal laser fluence ranges to clean graffiti on silicates. Construction and Building Materials 148, 122–130. https://doi.org/10.1016/j.conbuildmat.2017.05.035
  • Ricci, C., Gambino, F., Nervo., M., Piccirillo, A., Scarcella, A., Zenucchini, F., Pozo-Antonio. J.S. 2020a. Developing New Cleaning Strategies of Cultural Heritage Stones: Are Synergistic Combinations of a Low-Toxic Solvent Ternary Mixtures Followed by Laser the Solution?. Coatings 10 (5), 466; https://doi.org/10.3390/coatings10050466
  • Ricci, C., Gambino, F., Nervo, M., Piccirillo, A., Scarcella, A., Zenucchini, F., Ramil. A., Pozo-Antonio, J.S., 2020b. Enhancement of graffiti removal from heritage stone by combining laser ablation and application of a solvent mixture. Construction and building materials 262, 119934. https://doi.org/10.1016/j.conbuildmat.2020.119934
  • Rivas, T., Pozo, S., Fiorucci, M.P., López, A.J., Ramil, A., 2012. Nd:YVO4 laser removal of graffiti from granite. Influence of paint and rock properties on cleaning efficacy. Applied Surface Science 263, 563–572. https://doi.org/10.1016/j.apsusc.2012.09.110
  • Rivas. T., Lopez, A.J., Ramil, A., Pozo, S., Fiorucci, P., López de Silanes, M.E., García, A., Vazquez de Aldana, J.R., Romero, C., Moreno, P., 2013. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers. Applied Surface Science 278, 226–233. https://doi.org/10.1016/j.apsusc.2012.12.038
  • Rivas, T., Pozo-Antonio, J.S., López de Silanes, M.E., Ramil, A., López, A.J., 2018. Laser versus scalpel cleaning of crustose lichen on granite. Applied Surface Science 440, 467–476. https://doi.org/10.1016/j.apsusc.2018.01.167
  • Rivas, T., Pozo-Antonio, J.S., Ramil, A., López, A.J., 2020. Influence of the weathering rate on the response of granite to nanosecond UV laser irradiation. Science of the Total Environment 706, 135999. https://doi.org/10.1016/j.scitotenv.2019.135999
  • Sanz,M., Oujja,M., Ascaso, C., de los Ríos, A., Pérez-Ortega, S., Souza-Egipsy, V.,Wierzchos, J., Speranza,M., Cañamares,M.V., Castillejo, M., 2015. Infrared and ultraviolet laser removal of crustose lichens on dolomite heritage stone. Applied Surface Science 346, 248–255. https://dx.doi.org/10.1016/j.apsusc.2015.04.013
  • Siano, S., Agresti, J., Cacciari, I., Ciofini, D., Mascalchi, M., Osticioli, I., Mencaglia, A.A., 2012. Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd:YAG lasers. Applied Physics A - Materials Science & Processing 106, 419–446. http://dx.doi.org/10.1007/s00339-011-6690-8
  • Tserevelakis, G.J., Pozo-Antonio, J.S., Siozos, P., Rivas, T., Pouli, P., Zacharakis, G., 2019. On-line photoacoustic monitoring of laser cleaning on stone: evaluation of cleaning effectiveness and detection of potential damage to the substrate. Journal of Cultural heritage 35, 108–115. https://doi.org/10.1016/j.culher.2018.05.014
  • Weeks, C., 1998. The 'Portail de la Mere Dieu' of Amiens Cathedral: Its polychromy and conservation. Studies in Conservation 43 (2), 101–108. https://doi.org/10.2307/1506646