La supervivencia en las empresas turísticas españolas: un estudio económico-contable

  1. Rubén Lado-Sestayo 1
  2. Milagros Vivel-Búa 1
  3. María Amparo Centeno-Carballido 2
  4. Andrea Martínez-Salgueiro 3
  1. 1 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

  2. 2 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

  3. 3 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

Journal:
Revista de Contabilidad y Tributación. CEF

ISSN: 2695-6896 2792-8306

Year of publication: 2024

Issue: 492

Pages: 233-258

Type: Article

DOI: 10.51302/RCYT.2024.19297 DIALNET GOOGLE SCHOLAR

More publications in: Revista de Contabilidad y Tributación. CEF

Abstract

This article analyses the business survival and its determinants in the Spanish tourism sector during the period 2018-2021. In particular, it analyses a sample of companies in the hotel and catering sector, located in Spain and during a period of pandemic generated by the SARS-CoV-2 virus. At the same time, this research considers determinants both at the firm level, and at the level of the tourist destination where they are located. The results show that both types of variables are relevant in the study of business survival, although their significance and importance is different depending on the nature of the business, between hotels and restaurants.

Bibliographic References

  • Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609.
  • Barros, C. P., Butler, R. y Correia, A. (2010). The Length of Stay of Golf Tourism: A Survival Analysis. Tourism Management, 31(1), 13-21.
  • Beaver, W. H. (1966). Financial Ratios as Predictors of Failure. Journal of Accounting Research, 4, 71-111.
  • Billor, N., Hadi, A. S. y Velleman, P. F. (2000). BACON: Blocked Adaptive Computation-ally Efficient Outlier Nominators. Computational Statistics & Data Analysis, 34(3), 279-298.
  • Brouder, P. y Eriksson, R. (2013). Staying Power: What Influences Micro-Firm Survival in Tourism? Tourism Geographies: An International Journal of Tourism Space, Place and Environment, 15(1), 125-144.
  • Chen, M.-H. (2013). Risk Determinants of China's Hotel Industry. Tourism Economics, 19(1), 77-99.
  • Diakomihalis, M. (2012). The Accuracy of Altman's Models in Predicting Hotel Bankruptcy. International Journal of Accounting and Financial Reporting, 2(2), 96-113.
  • El Kalak, I. y Hudson, R. (2016). The Effect of Size on the Failure Probabilities of Smes: An Empirical Study on the US Market Using Discrete Hazard Model. International Review of Financial Analysis, 43, 135-145.
  • Falk, M. (2013). A Survival Analysis of Ski Lift Companies. Tourism Management, 36(1), 377-390.
  • Fitzpatrick, P. (1932). A Comparison of the Ratios of Successful Industrial Enterprises with Those of Failed Companies. The Accountants Publishing Company, 6, 727-731.
  • Flagestad, A. y Hope, C. A. (2001). Strategic Success in Winter Sports Destinations: A Sustainable Value Creation Perspective. Tourism Management, 22(5), 445-461.
  • Gémar, G., Moniche, L. y Morales, A. J. (2016). Survival Analysis of the Spanish Hotel Industry. Tourism Management, 54(1), 428-438.
  • Getis, A. y Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24(3), 189-206.
  • Gu, Z. (2002). Analyzing Bankruptcy in the Restaurant Industry: A Multiple Discriminant Model. International Journal of Hospitality Management, 21(1), 25-42.
  • Gu, Z. y Gao, L. (2000), A Multivariate Model for Predicting Business Failures of Hos-pitality Firms. Tourism and Hospitality Research, 2(1), 37-49.
  • Gu, Z. y Kim, H. (2003). An Examination of the Determinants of Hotel REITs' Unsystem-atic Risk. Journal of Hospitality & Tourism Research, 27(2), 166-184.
  • Heracleous, L. y Werres, K. (2016). On the Road to Disaster: Strategic Misalignments and Corporate Failure. Long Range Planning, 49(4), 491-506.
  • Hostelería de España (2022). Anuario de la hostelería de España. https://www.cetex.es/wp-content/uploads/2022/12/ANU-ARIO-HOSTELERIA-2022.pdf
  • Hsu, L. T. J. y Jang, S. S. (2008). Advertising Expenditure, Intangible Value and Risk: A Study of Restaurant Companies. International Journal of Hospitality Management, 27(2), 259-267.
  • Kalnins, A. y Chung, W. (2006). Social Capital, Geography, and Survival: Gujarati Immigrant Entrepreneurs in the US Lodging Industry. Management Science, 52(2), 233-247.
  • Kaniovski, S. y Peneder, M. (2008). Deter-minants of Firm Survival in the Austrian Accommodation Sector. Tourism Economics, 14(3), 527-543.
  • Kim, H. (2011). Prediction of Hotel Bankruptcy Using Support Vector Machine, Artificial Neural Network, Logistic Regression, and Multivariate Discriminant Analysis. The Service Industries Journal, 31(3), 441-468.
  • Kim, H. y Gu, Z. (2006a). A Logistic Regression Analysis for Predicting Bankruptcy in the Hospitality Industry. The Journal of Hospitality Financial Management, 14(1), 17-34.
  • Kim, H. y Gu, Z. (2006b). Predicting Restaurant Bankruptcy: A Logit Model in Comparison with a Discriminant Model. Journal of Hospitality & Tourism Research, 14(1), 474-493.
  • Kim, H., Kim, J. y Gu, Z. (2012). An Examination of US Hotel Firms' Risk Features and their Determinants of Systematic Risk. International Journal of Tourism Research, 14(1), 28-39.
  • Kim, W. G., Ryan, B. y Ceschini, S. (2007). Factors Affecting Systematic Risk in the US Restaurant Industry. Tourism Economics, 13(2), 197-208.
  • Lado-Sestayo, R., Vivel-Búa, M. y Otero-González, L. (2016). Survival in the Lodging Sector: An Analysis at the Firm and Location Levels. International Journal of Hospitality Management, 59, 19-30.
  • Li, H. y Sun, J. (2012). Forecasting Busi-ness Failure: The Use of Nearest-Neigh-bour Support Vectors and Correcting Imbalanced Samples. Evidence from the Chinese Hotel Industry. Tourism Management, 33(1), 622-634.
  • Li, H., Li, J., Chang, P. y Sun, J. (2013). Parametric Prediction on Default Risk of Chi-nese Listed Tourism Companies by Using Random Oversampling, Isomap, and Locally Linear Embeddings on Imbalanced Samples. International Journal of Hospitality Management, 35(1), 141-151.
  • Martin, D. (1977). Early Warning of Bank Failure: A Logit Regression Approach. Journal of Banking & Finance, 1(3), 249-276.
  • Mellahi, K. y Wilkinson, A. (2004). Organizational Failure: A Critique of Recent Research and a Proposed Integrative Framework. International Journal of Management Reviews, 5(1), 21-41.
  • Moulton, W. N., Thomas, H. y Pruett, M. (1996). Business Failure Path Ways: Environmental Stress and Organizational Response. Journal of Management, 22(4), 571-595.
  • Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18, 109-131.
  • OIT (2017). Pautas de la OIT sobre trabajo decente y turismo socialmente responsable. Departamento de Políticas Sectoriales.
  • Olsen, M., Bellas, C. y Kish, L. V. (1983). Improving the Prediction of Restaurant Failure through Ratio Analysis. International Journal of Hospitality Management, 2(4), 187-193.
  • Park, S. S. y Murat, H. (2012). A Comparative Study of Logit and Artificial Neural Networks in Predicting Bankruptcy in the Hospitality Industry. Tourism Economics: The Business and Finance of Tourism and Recreation, 18(2), 311-338.
  • Serrano, C. y Martín, B. (1993). Predicción de la crisis bancaria mediante el empleo de redes neuronales artificiales. Revista Española de Financiación y Contabilidad, 22(74), 153-176.
  • Smith, R. y Winakor, A. (1935). Changes in Financial Structure of Unsuccessful Industrial Corporations. Bureau of Business Research, 51.
  • Tascón, M. T. y Gutiérrez, F. J. C. (2012). Variables y modelos para la identificación y predicción del fracaso empresarial: Revisión de la investigación empírica reciente/Variables and Models for the Identifi-cation and Prediction of Business Failure: Revision of Recent Empirical Research Advances. Revista de Contabilidad/SpanishAccounting Review, 15(1), 7-58.
  • Tavlin, E. M., Moncarz, E. y Dumont, D. (1989). Financial Failure in the Hospitality Industry. FIU Review, 7(1), 55-75.
  • UNWTO (2020). World Tourism Barometer/Barómetro OMT del Turismo Mundial. https://doi.org/10.18111/wtobarometeresp
  • Vivel-Búa, M. y Lado-Sestayo, R. (2021). Contagion Effect on Business Failure: A Spatial Analysis of the Hotel Sector. Journal of Hospitality & Tourism Research, 47(3), 482-502.
  • Vivel-Búa, M., Lado-Sestayo, R. y Otero-González, L. (2018). Risk Determinants in the Hotel Sector: Risk Credit in MSMEs. International Journal of Hospitality Management, 70, 110-119.
  • Vivel-Búa, M., Lado-Sestayo, R. y Otero-González, L. (2019). Influence of Firm Characteristics and the Environment on Hotel Survival across MSMEs Segments During the 2007-2015 Period. Tourism Management, 75, 477-490.
  • Youn, H. y Gu, Z. (2010a). Predict US Restaurant Firm Failures: The Artificial Neural Network Model versus Logistic Regression Model. Tourism and Hospitality Research, 10(3), 1-17.
  • Youn, H. y Gu, Z. (2010b). Predicting Korean Lodging Firm Failures: An Artificial Neural Network Model along with a Logistic Regression Model. International Journal of Hospitality Management, 29(1), 120-127.
  • Zmijewski, M. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22(1), 59-82.