Optimal features for auditory categorization

  1. Liu, Shi Tong
  2. Montes-Lourido, Pilar
  3. Wang, Xiaoqin
  4. Sadagopan, Srivatsun
Revista:
Nature Communications

ISSN: 2041-1723

Ano de publicación: 2019

Volume: 10

Número: 1

Tipo: Artigo

DOI: 10.1038/S41467-019-09115-Y GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Nature Communications

Obxectivos de Desenvolvemento Sustentable

Referencias bibliográficas

  • Peterson, G. E. & Barney, H. L. Control methods used in a study of the vowels. J. Acoust. Soc. Am. 24, 175–184 (1952).
  • Hillenbrand, J., Getty, L. A., Clark, M. J. & Wheeler, K. Acoustic characteristics of American English vowels. J. Acoust. Soc. Am. 97, 3099–3111 (1995).
  • Wang, X. On cortical coding of vocal communication sounds in primates. Proc. Natl Acad Sci USA 97, 11843–11849 (2000).
  • Epple, G. Comparative studies on vocalization in marmoset monkeys (hapalidae). Folia Primatol. 8, 1–40 (1968).
  • Chen, H. C., Kaplan, G. & Rogers, L. J. Contact calls of common marmosets (Callithrix jacchus): influence of age of caller on antiphonal calling and other vocal responses. Am. J. Primatol. 71, 165–170 (2009).
  • Miller, C. T., Mandel, K. & Wang, X. The communicative content of the common marmoset phee call during antiphonal calling. Am. J. Primatol. 72, 974–980 (2010).
  • Kato, Y. et al. Vocalizations associated with anxiety and fear in the common marmoset (Callithrix jacchus). Behav. Brain Res. 2275, 43–52 (2014).
  • Agamaite, J. A., Chang, C.-J., Osmanski, M. S. & Wang, X. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). J. Acoust. Soc. Am. 138, 2906–2928 (2015).
  • Tsao, D. Y. & Livingstone, M. S. Mechanisms of face perception. Annu. Rev. Neurosci. 31, 411–437 (2008).
  • Jenkins, R., White, D., Van Montfort, X. & Mike Burton, A. Variability in photos of the same face. Cognition 121, 313–323 (2011).
  • Kramer, R. S. S., Manesi, Z., Towler, A., Reynolds, M. G. & Burton, A. M. Familiarity and within-person facial variability: the importance of the internal and external features. Perception 47, 3–15 (2018).
  • Ullman, S., Vidal-Naguet, M. & Sali, E. Visual features of intermediate complexity and their use in classification. Nat. Neurosci. 5, 682–687 (2002).
  • Viola, P. & Jones, M. Robust real-time face detection. Int. J. Comput. Vision. 57, 137–154 (2004).
  • Sinha, P. Qualitative representations for recognition. In Proceedings of the Annual Workshop on Biologically Motivated Computer Vision. 249–262 (Springer-Verlag, London, UK, 2002).
  • Lerner, Y., Epshtein, B., Ullman, S. & Malach, R. Class information predicts activation by object fragments in human object areas. J. Cogn. Neurosci. 20, 1189–1206 (2008).
  • Sadagopan, S., Temiz-Karayol, N. Z. & Voss, H. U. High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci. Rep. 5, 10950 (2015).
  • Ullman, S. & Bart, E. Recognition invariance obtained by extended and invariant features. Neural Netw. 17, 833–848 (2004).
  • Wang, X. & Kadia, S. C. Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J. Neurophysiol. 86, 2616–2620 (2001).
  • Hromádka, T., Deweese, M. R. & Zador, A. M. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, e16 (2008).
  • Hromádka, T. & Zador, A. M. Representations in auditory cortex. Curr. Opin. Neurobiol. 19, 430–433 (2009).
  • Sadagopan, S. & Wang, X. Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J. Neurosci. 29, 11192–11202 (2009).
  • Eisenberg, J. F. The function and motivational basis of hystricomorph vocalizations. Symp. Zool. Soc. Lond. 34, 211–247 (1974).
  • Berryman, J. C. Guinea-pig vocalizations: their structure, causation and function. Z. Tierpsychol. 41, 80–106 (1976).
  • Grimsley, J. M., Shanbhag, S. J., Palmer, A. R. & Wallace, M. N. Processing of communication calls in guinea pig auditory cortex. PLoS ONE 7, e51646 (2012).
  • Hauser, M. D. Functional referents and acoustic similarity: field playback experiments with rhesus monkeys. Anim. Behav. 55, 1647–1658 (1998).
  • Smith, E. C. & Lewicki, M. S. Efficient auditory coding. Nature 439, 978–982 (2006).
  • Asari, H., Pearlmutter, B. A. & Zador, A. M. Sparse representations for the cocktail party problem. J. Neurosci. 26, 7477–7490 (2006).
  • Räsänen, O., Nagamine, T. & Mesgarani, N. Analyzing distributional learning of phonemic categories in unsupervised deep neural networks. Cogscience 2016, 1757–1762 (2016).
  • Khalighinejad, B., Cruzatto da Silva, G. & Mesgarani, N. Dynamic encoding of acoustic features in neural responses to continuous speech. J. Neurosci. 37, 2176–2185 (2017).
  • Kell, A. J. E., Yamins, D. L. K., Shook, E. N., Norman-Hagniere, S. V. & McDermott, J. H. A task optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy. Neuron 98, 630–644 (2018).
  • Ullman, S., Assif, L., Fetaya, E. & Harari, D. Atoms of recognition in human and computer vision. Proc. Natl Acad. Sci. USA 113, 2744–2749 (2016).
  • Anselmi, F. et al. Unsupervised learning of invariant representations. Theor. Comput. Sci. 633, 112–121 (2016).
  • DiMattina, C. & Wang, X. Virtual vocalization stimuli for investigating neural representations of species-specific vocalizations. J. Neurophysiol. 95, 1244–1262 (2006).
  • Hsu, A., Woolley, S. M., Fremouw, T. E. & Theunissen, F. E. Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. J. Neurosci. 24, 9201–9211 (2004).
  • Woolley, S. M., Fremouw, T. E., Hsu, A. & Theunissen, F. E. Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nat. Neurosci. 8, 1371–1379 (2005).
  • Stowell, D. & Plumbley, M. D. Large-scale analysis of frequency modulation in birdsong data bases. Methods Ecol. Evol. 5, 901–912 (2014).
  • Fukushima, M., Doyle, A. M., Mullarkey, M. P., Mishkin, M. & Averbeck, B. B. Distributed acoustic cues for caller identity in macaque vocalization. R. Soc. Open Sci. 2, 150432 (2015).
  • Town, S. M., Wood, K. C. & Bizley, J. K. Sound identity is represented robustly in auditory cortex during perceptual constancy. Nat. Commun. 9, 4786 (2018).
  • Pollak, G. D. The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system. Hear Res. 305, 86–101 (2013).
  • Portfors, C. V., Roberts, P. D. & Jonson, K. Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 18, 486–500 (2009).
  • Holmstrom, L. A., Eeuwes, L. B., Roberts, P. D. & Portfors, C. V. Efficient encoding of vocalizations in the auditory midbrain. J. Neurosci. 30, 802–819 (2010).
  • Suta, D., Kvasnák, E., Popelár, J. & Syka, J. Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. J. Neurophysiol. 90, 3794–3808 (2003).
  • Mlynarski, W. & McDermott, J. H. Learning midlevel auditory codes from natural sound statistics. Neural Comput. 8, 1–39 (2017).
  • MacKain, K. S., Best, C. T. & Srange, W. Categorical perception of English /r/ and /l/ by Japanese bilinguals. Appl. Psycholinguist. 2, 369–390 (1981).
  • Raizada, R. D. S., Tsao, F., Liu, H. & Kuhl, P. K. Quantifying the adequacy of neural representations for a cross-language phonetic discrimination task: prediction of individual differences. Cereb. Cortex 20, 1–12 (2010).
  • Jiang, X., Chevillet, M. A., Rauschecker, J. P. & Riesenhuber, M. Training humans to categorize monkey calls: auditory feature- and category-selective neural tuning changes. Neuron 98, 405–416 (2018).
  • Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B. & Miltra, P. P. A procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–1176 (2000).
  • Akselrod-Ballin, A. & Ullman, S. Distinctive and compact features. Image Vision. Comput. 26, 1269–1276 (2008).
  • Zilany, M. S., Bruce, I. C. & Carney, L. H. Updated parameters and expanded simulation options for a model of the auditory periphery. J. Acoust. Soc. Am. 126, 2390–2412 (2014).
  • Osmanski, M. S. & Wang, X. Measurement of absolute auditory thresholds in the common marmoset (Callithrix jacchus). Hear Res. 277, 127–133 (2011).