Pupillometry as a reliable metric of auditory detection and discrimination across diverse stimulus paradigms in animal models

  1. Montes-Lourido, Pilar
  2. Kar, Manaswini
  3. Kumbam, Isha
  4. Sadagopan, Srivatsun
Revista:
Scientific Reports

ISSN: 2045-2322

Ano de publicación: 2021

Volume: 11

Número: 1

Tipo: Artigo

DOI: 10.1038/S41598-021-82340-Y GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Scientific Reports

Información de financiamento

Financiadores

Referencias bibliográficas

  • Thompson, H. S., Franceschetti, A. T. & Thompson, P. M. Hippus. Semantic and historic considerations of the word. Am. J. Ophthalmol. 71, 1116–1120 (1971).
  • Turnbull, P. R. K., Irani, N., Lim, N. & Phillips, J. R. Origins of pupillary hippus in the autonomic nervous system. Invest. Ophthalmol. Vis. Sci. 58, 197–203 (2017).
  • Steinhauer, S. R., Siegle, G. J., Condray, R. & Pless, M. Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. Int. J. Psychophysiol. 52, 77–86 (2004).
  • Bradley, M. M., Miccoli, L., Escrig, M. A. & Lang, P. J. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45, 602–607 (2008).
  • Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).
  • Kahneman, D., Tursky, B., Shapiro, D. & Crider, A. Pupillary, heart rate, and skin resistance changes during a mental task. J. Exp. Psychol. 79, 164–167 (1969).
  • Zekveld, A. A., Koelewijn, T. & Kramer, S. E. The pupil dilation response to auditory stimuli: current state of knowledge. Trends Hear. 22, 2331216518777174 (2018).
  • Privitera, C. M., Renninger, L. W., Carney, T., Klein, S. & Aguilar, M. Pupil dilation during visual target detection. J. Vis. 10, 3–3 (2010).
  • Lisi, M., Bonato, M. & Zorzi, M. Pupil dilation reveals top-down attentional load during spatial monitoring. Biol. Psychol. 112, 39–45 (2015).
  • Zhao, S., Bury, G., Milne, A. & Chait, M. Pupillometry as an objective measure of sustained attention in young and older listeners. Trends Hear. 23, 2331216519887815 (2019).
  • Zekveld, A. A., Kramer, S. E. & Festen, J. M. Pupil response as an indication of effortful listening: the influence of sentence intelligibility. Ear Hear. 31, 480–490 (2010).
  • Zekveld, A. A., Kramer, S. E. & Festen, J. M. Cognitive load during speech perception in noise: the influence of age, hearing loss, and cognition on the pupil response. Ear Hear. 32, 498–510 (2011).
  • Winn, M. B., Edwards, J. R. & Litovsky, R. Y. The impact of auditory spectral resolution on listening effort revealed by pupil dilation. Ear Hear. 36, e153-165 (2015).
  • Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).
  • McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).
  • Poulet, J. F. A. Keeping an eye on cortical states. Neuron 84, 246–248 (2014).
  • McGinley, M. J., David, S. V. & McCormick, D. A. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).
  • Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).
  • Reimer, J. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7, 13289 (2016).
  • Hayat, H. et al. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci. Adv. 6, eaaz4232 (2020).
  • Yuzgec, O., Prsa, M., Zimmerman, R. & Huber, D. Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Curr. Biol. 28, 392–400 (2018).
  • Artoni, P. et al. Deep learning of spontaneous arousal fluctutations detects early cholinergic defects across neurodevelopmental mouse models and patients. Proc. Natl. Acad. Sci. USA 117, 23298–23303 (2020).
  • Bala, A. D. & Takahashi, T. T. Pupillary dilation response as an indicator of auditory discrimination in the barn owl. J. Comp. Physiol. A 186, 425–434 (2000).
  • Steinhauer, S. & Zubin, J. Vulnerability to schizophrenia: information processing in the pupil and event-related potential. In Biological Markers in Psychiatry and Neurology (eds. Usdin, E. & Hanin, I.) 371–385 (Pergamon, 1982). doi:https://doi.org/10.1016/B978-0-08-027987-9.50042-1.
  • Jagiello, R., Pomper, U., Yoneya, M., Zhao, S. & Chait, M. Rapid brain responses to familiar vs. unfamiliar music—an EEG and pupillometry study. Sci. Rep. 9, 15570 (2019).
  • Hong, L., Walz, J. M. & Sajda, P. Your eyes give you away: prestimulus changes in pupil diameter correlate with poststimulus task-related EEG dynamics. PLoS ONE 9, e91321 (2014).
  • Zhao, S. et al. Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences. Nat. Commun. 10, 4030 (2019).
  • Southwell, R. et al. Is predictability salient? A study of attentional capture by auditory patterns. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372 (2017).
  • Bala, A. D. S., Whitchurch, E. A. & Takahashi, T. T. Human auditory detection and discrimination measured with the pupil dilation response. J. Assoc. Res. Otolaryngol. 21, 43–59 (2020).
  • Steinhauer, S. R. & Hakerem, G. The pupillary response in cognitive psychophysiology and schizophrenia. Ann. N. Y. Acad. Sci. 658, 182–204 (1992).
  • Turi, M., Burr, D. C. & Binda, P. Pupillometry reveals perceptual differences that are tightly linked to autistic traits in typical adults. eLife 7, e32399 (2018).
  • Chapman, L. R. & Hallowell, B. A novel pupillometric method for indexing word difficulty in individuals with and without aphasia. J. Speech Lang. Hear. Res. 58, 1508–1520 (2015).
  • Oleson, T. D., Westenberg, I. S. & Weinberger, N. M. Characteristics of the pupillary dilation response during pavlovian conditioning in paralyzed cats. Behav. Biol. 7, 829–840 (1972).
  • Clayton, K. K. et al. Auditory corticothalamic neurons are recruited by motor preparatory inputs. Curr. Biol. 31, 1–13 (2021).
  • Mirman, D. Growth Curve Analysis and Visualization Using R (CRC Press, Boca Raton, 2016).
  • Teki, S., Chait, M., Kumar, S., von Kriegstein, K. & Griffiths, T. D. Brain bases for auditory stimulus-driven figure-ground segregation. J. Neurosci. 31, 164–171 (2011).
  • Teki, S., Chait, M., Kumar, S., Shamma, S. & Griffiths, T. D. Segregation of complex acoustic scenes based on temporal coherence. eLife 2, e00699 (2013).
  • Teki, S. et al. Neural correlates of auditory figure-ground segregation based on temporal coherence. Cereb. Cortex 26, 3669–3680 (2016).
  • Schwartz, Z. P., Buran, B. N. & David, S. V. Pupil-associated states modulate excitability but not stimulus selectivity in primary auditory cortex. J. Neurophysiol. 123, 191–208 (2020).
  • Heffner, R., Heffner, H. & Masterton, B. Behavioral measurements of absolute and frequency-difference thresholds in guinea pig. J. Acoust. Soc. Am. 49, 1888–1895 (1971).
  • Osmanski, M. S., Song, X., Guo, Y. & Wang, X. Frequency discrimination in the common marmoset (Callithrix jacchus). Hear. Res. 341, 1–8 (2016).
  • Song, X., Osmanski, M. S., Guo, Y. & Wang, X. Complex pitch perception mechanisms are shared by humans and a New World monkey. Proc. Natl. Acad. Sci. U. S. A. 113, 781–786 (2016).
  • Christison-Lagay, K. L., Bennur, S. & Cohen, Y. E. Contribution of spiking activity in the primary auditory cortex to detection in noise. J. Neurophysiol. 118, 3118–3131 (2017).
  • Atiani, S., Elhilali, M., David, S. V., Fritz, J. B. & Shamma, S. A. Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron 61, 467–480 (2009).
  • Schneider, D. M. & Woolley, S. M. N. Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron 79, 141–152 (2013).
  • Gay, J. D., Voytenko, S. V., Galazyuk, A. V. & Rosen, M. J. Developmental hearing loss impairs signal detection in noise: putative central mechanisms. Front. Syst. Neurosci. 8, 162 (2014).
  • Shetake, J. A. et al. Cortical activity patterns predict robust speech discrimination ability in noise. Eur. J. Neurosci. 34, 1823–1838 (2011).
  • Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B. & Mitra, P. P. A procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–1176 (2000).
  • Grimsley, J. M. S., Shanbhag, S. J., Palmer, A. R. & Wallace, M. N. Processing of communication calls in guinea pig auditory cortex. PLoS ONE 7, e51646 (2012).
  • Berryman, J. C. Guinea-pig vocalizations: their structure, causation and function. Z. Für Tierpsychol. 41, 80–106 (1976).
  • Escudero, M., de Waele, C., Vibert, N., Berthoz, A. & Vidal, P. P. Saccadic eye movements and the horizontal vestibule-ocular and vestibule-collic reflexes in the intact guinea-pig. Exp. Brain Res. 97, 254–262 (1993).
  • Wichmann, F. A. & Hill, N. J. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001).