Kinetics and Mechanisms of Aryldiazonium Ions in Aqueous Solutions

  1. Bravo-Díaz, Carlos
  2. González-Romero, Elisa
Libro:
Aryl Diazonium Salts and Related Compounds

ISSN: 2197-4349 2197-4357

ISBN: 9783031043970 9783031043987

Ano de publicación: 2022

Páxinas: 59-77

Tipo: Capítulo de libro

DOI: 10.1007/978-3-031-04398-7_3 GOOGLE SCHOLAR lock_openAcceso aberto editor

Resumo

In aqueous acid solution and in mixed alcohol-water solvents ([H3O+] > 10–2 M), in the dark and in the absence of reductants, the spontaneous decomposition of aryldiazonium, ArN2+, salts proceeds through borderline SN1 (DN + AN) -SN2 mechanisms. The rate constant values depend strongly on the nature of the substituents attached to the aromatic ring of ArN2+ and, for those with electron-withdrawing substituents, on solution composition. The product distribution is proportional to the composition of the solvation shell of the ipso carbon, which reflects the composition of the water/cosolvent mixture. However, upon decreasing moderately the acidity, reactions involving the formation of diazohydroxides, ArN2OH, diazoethers, ArN2OR, and diazoates, ArN2O−, become competitive and may even be the main decomposition pathway. The stability of ArN2OH, ArN2OR, and ArN2O− species (which may coexist with ArN2+ in solution) is intimately related to the Z-E (syn-anti, cis-trans) isomerization of the O-adducts, so that they may undergo further reactions when they are components of a Lewis acid-base equilibrium, or undergo homolytic scission to produce homolytic reduction products. In this book chapter, we aim to provide the reader with a practical and (hopefully) useful view of the complex chemistry of ArN2+ in aqueous and mixed alcohol-water solutions, mainly covering the kinetics and mechanisms of the reactions. In a last section, we introduce some analytical methods for the determination of diazonium salts and their degradation products.

Referencias bibliográficas

  • Griess JP (1864) Philos Trans R Soc. London. https://doi.org/10.1098/rstl.1864.0018
  • Griess P (1858) Liebigs Ann Chem 106:123
  • Zollinger H (1994) Diazo chemistry I: aromatic and heteroaromatic compounds
  • Saunders KH, Allen RLM (1985) Aromatic Diazo compounds. Baltimore, MD, USA, E Arnold
  • Mo F, Qiu D, Zhang Y, Wang J (2018) Acc Chem Res 51:496–506. https://doi.org/10.1021/acs.accounts.7b00566
  • Roglans A, Pla-Quintana A, Moreno-Mañas M (2006) Chem Rev 106:4622–4643. https://doi.org/10.1021/cr0509861
  • Kostas ID (2018) Suzuki–Miyaura cross—coupling reaction and potential applications. MDPI AG
  • Sengupta S, Chandrasekaran S (2019) Org Biomol Chem 17:8308–8329. https://doi.org/10.1039/C9OB01471C
  • Mohamed AA, Salmi Z, Dahoumane SA, Mekki A, Carbonnier B, Chehimi MM (2015) Adv Coll Interface Sci 225:16–36. https://doi.org/10.1016/j.cis.2015.07.011
  • Chehimi MM (2012) Aryl diazonium salts: new coupling agents in polymer and surface science. Wiley
  • Granozzi G, Alonso-Vante N (2019) Electrochemical surface science: basics and applications. Mdpi AG
  • Hetemi D, Noël V, Pinson J (2020) Biosensors 10. https://doi.org/10.3390/bios10010004
  • Dar AA, Bravo-Diaz C, Nazir N, Romsted LS (2017) Curr Opin Colloid Interface Sci 32:84–93. https://doi.org/10.1016/j.cocis.2017.09.001
  • Bravo-Díaz C, Romsted LS, Liu C, Losada-Barreiro S, Pastoriza-Gallego MJ, Gao X, Gu Q, Krishnan G, Sánchez-Paz V, Zhang Y, Ahmad-Dar A (2015) Langmuir 31:8961–8979. https://doi.org/10.1021/acs.langmuir.5b00112
  • Firth JD, Fairlamb IJS (2020) Org Lett 22:7057–7059. https://doi.org/10.1021/acs.orglett.0c02685
  • Trusova ME, Kutonova KV, Kurtukov VV, Filimonov VD, Postnikov PS (2016) Res-Efficient Technol 2:36–42. https://doi.org/10.1016/j.reffit.2016.01.001
  • Zollinger H (1991) Color chemistry. VCH
  • Bravo Díaz C (2011) Diazohydroxides, diazoethers and related species. In: Rappoport Z, Liebman JF (eds) The chemistry of hydroxylamines, oximes and hydroxamic acids. Wiley, Chichester, UK
  • Cruz GN, Lima FS, Dias LG, el Seoud OA, Horinek D, Chaimovich H, Cuccovia IM (2015) J Org Chem 80:8637–8642. https://doi.org/10.1021/acs.joc.5b01289
  • Zollinger H (1995) Diazo chemistry II. In: Aliphatic, inorganic and organometallic compounds. Weinheim, Germany, VCH
  • Zollinger H (1983) Dediazoniations of arenediazonium ions and related compounds. In: Patai S, Rappoport Z (eds) The chemistry of triple bonded functional groups. Wiley
  • Moss RA (1974) Acc Chem Res 7:421–427. https://doi.org/10.1021/ar50084a005
  • Pazo-Llorente R, Bravo-Díaz C, González-Romero E (2003) Eur J Org Chem 2003:3421. https://doi.org/10.1002/ejoc.200300183
  • Costas-Costas U, Bravo-Díaz C, González-Romero E (2003) Langmuir 19:5197–5203. https://doi.org/10.1021/la026922s
  • Losada-Barreiro S, Sánchez-Paz V, Pastoriza-Gallego MJ, Bravo-Diaz C (2008) Helv Chim Acta 91:21–34. https://doi.org/10.1002/hlca.200890009
  • Hegarty AF (1978) Kinetics and mechanisms of reactions involving diazonium and diazo groups. In: Patai S (ed) The chemistry of diazonium and diazo compounds. Wiley, NY
  • Galli C (1988) Chem Rev 88:765. https://doi.org/10.1021/cr00087a004
  • Cuccovia IM, da Silva MA, Ferraz HM, Pliego Jr JR, Riveros JM, Chaimovich H (2000) J Chem Soc Perkin Tans 2:1896. https://doi.org/10.1039/b003079l
  • García Martínez A, de la Moya Cerero S, Osío Barcina J, Moreno Jiménez F, Lora Maroto B (2013) Eur J Org Chem 6098–6107. https://doi.org/10.1002/ejoc.201300834
  • Ussing BR, Singleton DA (2005) J Am Chem Soc 127:2888. https://doi.org/10.1021/ja043918p
  • Bravo-Diaz C (2009) Mini-Rev Org Chem 6:105–113. https://doi.org/10.2174/157019309788167693
  • Bentley TW, Ryu ZH (1994) J Chem Soc Perkin Trans 2:761. https://doi.org/10.1039/P29940002531
  • Pazo-Llorente R, Maskill H, Bravo-Díaz C, González-Romero E (2006) Eur J Org Chem 2006:2201. https://doi.org/10.1002/ejoc.200500946
  • Hartley GS (1938) J Chem Soc 633. https://doi.org/10.1039/JR9380000633
  • Hantzsch A, Werner A (1890) Ber Dtsch Chem Ges 23:11. 443.webvpn.fjmu.edu.cn/https://doi.org/10.1007/978-3-642-99003-8_13
  • Costas-Costas U, Gonzalez-Romero E, Bravo-Díaz C (2001) Helv Chim Acta 84:632–648. https://doi.org/10.1002/1522-2675(20010321)84:3%3c632::AID-HLCA632%3e3.0.CO;2-0
  • Hanson P, Jones JR, Taylor AB, Walton PH, Timms AW (2002) J Chem Soc Perkin Trans 2:1135
  • Canning PSJ, Mccrudden K, Maskill H, Sexton B (1999) J Chem Soc, Perkin Trans 2(12):2735. https://doi.org/10.1039/A905567C
  • González-Romero E, Malvido-Hermelo B, Bravo-Díaz C (2002) Langmuir 18:46. https://doi.org/10.1021/la010938l
  • Pazo-Llorente R, Bravo-Díaz C, González-Romero E (2004) Eur J Org Chem 2004:3221. https://doi.org/10.1002/ejoc.200400170
  • Fernandez-Alonso A, Bravo-Diaz C (2010) J Phys Org Chem 23:938. https://doi.org/10.1002/poc.1730
  • Pazo-Llorente R, Bravo-Diaz C, Gonzalez-Romero E (2003) Langmuir 19:9142. https://doi.org/10.1021/la034879i
  • Fernández-Alonso A, Bravo-Diaz C (2010) Helv Chim Acta 93:877. https://doi.org/10.1002/hlca.200900322
  • Crossley ML, Kienle RH, Benbrook CH (1940) J Am Chem Soc 62:1400–1404. https://doi.org/10.1021/ja01863a019
  • Fernández-Alonso A, Bravo-Diaz C (2008) Org Biomol Chem 6:4004–4011. https://doi.org/10.1039/B809521C
  • González-Romero E, Fernández-Calvar MB, Bravo-Díaz C (2002) Langmuir 18:10311. https://doi.org/10.1021/la026312s
  • Bravo-Díaz C, González-Romero E (2003) Electroanalysis 15:303–311. 1040-0397/03/0402-0303
  • Bravo-Díaz C, González-Romero E (2003) Electrochemical behavior of arenediazonium ions. New trends and applications. In: Current Topics in Electrochemistry. Research Trends, Trivandrum, India
  • Pastoriza-Gallego MJ, Losada-Barreiro S, Bravo Díaz C (2012) J Phys Org Chem 25:908–915. https://doi.org/10.1002/poc.2949
  • Fry AJ (1978) Electrochemistry of the diazo and diazonium groups. In: Patai S (ed) The chemistry of Diazo and Diazonium Groups. Wiley, NY
  • Viertler H, Pardini VL, Vargas RR (1994) The electrochemistry of triple bond. In: Patai S (ed) The chemistry of triple-bonded functional groups, supplement C. Wiley, NY
  • Zuman P (1969) Physical organic polarography. In: Zuman P, Perrin CL (eds) Organic polarography. Wiley, NY
  • Sienkiewicz A, Szymulaa M, Narkiewicz-Michaleka J, Bravo-Díaz C (2014) J Phys Org Chem 27:284–289. https://doi.org/10.1002/poc.3194
  • Lowry TH, Richardson KS (1987) Mechanism and theory in organic chemistry. Harper-Collins Pub, New York
  • Fernández-Alonso A, Pastoriza-Gallego MJ, Bravo-Diaz C (2010) Org Biomol Chem 8:5304–5312. https://doi.org/10.1039/c0ob00143k
  • Doyle MP, Nesloney CL, Shanklin MS, Marsh CA, Brown KC (1989) J Org Chem 54:3785–3789. https://doi.org/10.1021/jo00277a009
  • Costas Costas U, Bravo-Díaz C, González-Romero E (2005) Langmuir 21:10983–10991. https://doi.org/10.1021/la051564p
  • Costas-Costas U, Bravo-Díaz C, González-Romero E (2004) Langmuir 20:1631–1638
  • Pastoriza-Gallego MJ, Fernández-Alonso A, Losada-Barreiro S, Sánchez-Paz V, Bravo-Diaz C (2008) J Phys Org Chem 21:524–530. https://doi.org/10.1002/poc.1289
  • Losada-Barreiro S, Sánchez-Paz V, Bravo-Díaz C (2007) Helv Chim Acta 90:1559–1573. https://doi.org/10.1002/hlca.200790163
  • Losada-Barreiro S, Bravo-Diaz C (2009) Helv Chim Acta 92:2009–2023. https://doi.org/10.1002/hlca.200900080
  • Jaszczuk K, Dudzik A, Losada-Barreiro S, Szymula M, Narkiewicz-Michalek J, Bravo-Díaz C (2016) J Phys Org Chem 29:586–593
  • Dudzik A, Jaszczuk K, Losada-Barreiro S, Bravo-Díaz C (2017) New J Chem 41:2534–2542. https://doi.org/10.1039/C6NJ03670H
  • Wittwer R, Zollinger H (1954) Helv Chim Acta 37:1954. https://doi.org/10.1002/hlca.19540370707
  • Lewis ES, Surh H (1958) J Am Chem Soc 80:1367. https://doi.org/10.1021/ja01539a023
  • Brown KC, Doyle MP (1988) J Org Chem 53:3255–3261. https://doi.org/10.1021/jo00249a021
  • Zollinger H (2003) Color chemistry. In: Syntheses, properties, and applications of organic dyes and pigments, 3rd revised edn. Wiley-VCH Verlag, Zürich. https://doi.org/10.1002/anie.200385122 Is this book the vsame as ref 17
  • García-Meijide MC, Bravo-Díaz C, Romsted LS (1998) Int J Chem Kin 30:31–39. https://doi.org/10.1002/(SICI)1097-4601(1998)30:1<31::AID-KIN4>3.0.CO;2-V
  • Quintero B, Morales JJ, Quirós M, Martínez-Puentedura MI, Cabeza MC (2000) Free Radic Biol Med 29:464–479. https://doi.org/10.1016/s0891-5849(00)00321-x
  • Laali KK, Gettwert VJ (2001) J Fluor Chem 107:31–34. https://doi.org/10.1016/S0022-1139(00)00337-7
  • Chaudhuri A, Loughlin JA, Romsted LS, Yao J (1993) J Am Chem Soc 115:8351–8361. https://doi.org/10.1021/ja00071a050
  • Bravo-Díaz C, González-Romero E (2003) J Chromatogr A 989:221–229. https://doi.org/10.1016/S0021-9673(03)00170-5
  • Yasui S, Nakamura K, Ohno A (1984) J Org Chem 49:878–882. https://doi.org/10.1021/jo00179a024
  • Hanson P, Hammond RC, Goodacre PR, Purcell J, Timms AW (1994) J Chem Soc Perkin Trans 1(2):691–696. https://doi.org/10.1039/P2994000069
  • Pazo-Llorente R, Bravo-Díaz C, González-Romero E (2001) Fresenius J Anal Chem 369:582–586. https://doi.org/10.1007/s002160000694
  • Gunaseelan K, Romsted LS, González-Romero E, Bravo-Díaz C (2004) Langmuir 20:3047–3055. https://doi.org/10.1021/la0354279
  • Hanson P, Hammond RC, Goodacre PR, Purcell J, Timms AW (1994) J Chem Soc, Perkin Trans 1. 2:691–696. https://doi.org/10.1039/P2994000069
  • Gunaseelan K, Romsted LS, Pastoriza Gallego M-J, González-Romero E, Bravo-Díaz C (2006) Adv Colloid Interface Sci 123–126:303–311. https://doi.org/10.1016/j.cis.2006.05.007
  • Gunaseelan K, Romsted LS, González-Romero E, Bravo-Díaz C (2004) Langmuir 20:3047–3055. https://doi.org/10.1021/la0354279
  • Scaiano JC, Kim-Thuan N, Leigh WJ (1984) J Photochem 24:79–86. https://doi.org/10.1016/0047-2670(84)80009-X