Nitrate and Phosphorus Transport in a Galician River (NW Iberian Peninsula)Insights From Fourteen Years of Monitoring
- María Luz Rodríguez-Blanco 1
- María Mercedes Taboada-Castro 2
- María Teresa Taboada-Castro 3
-
1
Universidade de Vigo
info
-
2
Universidad de Valladolid
info
-
3
Universidade da Coruña
info
ISSN: 2253-6574
Ano de publicación: 2023
Volume: 13
Número: 1
Tipo: Artigo
Outras publicacións en: Spanish Journal of Soil Science: SJSS
Resumo
The long-term development of water quality metrics is critical to estimate the status of water resources and successful catchment management. This study looks at the temporal evolution of nitrate and phosphorus loads and concentrations in a stream draining rural catchment in Galicia (NW Iberian Peninsula) during 14 hydrological years. The concentrations of both nutrients are relatively low because of the rural nature of the research catchment and low-intensity agriculture. However, catchment nutrient reference levels were widely exceeded. The hydrology controls nutrient fluxes as flow is the main driver of nutrient transfer. For both nutrients there were no consistent trends in nutrient fluxes. The analysed nutrients, however, have been seen to behave differently. As a result, N seems to be decreasing, mainly due to decreased transit in the autumn and spring. Phosphorus, which is primarily transported as particulate matter, exhibits an increase in winter linked to a greater flow and sediment transfer.
Referencias bibliográficas
- Abbott, B. W., Moatar, F., Gauthier, O., Fovet, O., Antoine, V., and Ragueneau, O. (2018). Trends and Seasonality of River Nutrients in Agricultural Catchments: 18 Years of Weekly Citizen Science in France. Sci. Total Environ. 624, 845–858. doi:10.1016/j.scitotenv.2017.12.176
- Antelo, J. M., and Arce, F. (1996). “Características fisicoquímicas das augas superficiais,” in As Aguas de Galicia. Editor F. Díaz-Fierros (Santiago de Compostela, Spain: Consello da Cultura Galega), 353–446.
- APHA (1998). Standard Methods for the Examination of Water and Wastewater 20th Edition. Washington, DC: American Public Health Association, American Water Work Association, Water Environment Federation.
- Bennett, E. M., Carpenter, S. R., and Caraco, N. F. (2001). Human Impact on Erodable Phosphorus and Eutrophication: A Global Perspective. Bioscience 51 (3), 227–234. doi:10.1641/0006-3568(2001)051[0227:hioepa]2.0.co;2
- Bernárdez, P., Ospina-Álvarez, N., Caetano, M., and Prego, R. (2013). Fluvial Contributions of Nutrient Salts, Dissolved Trace Elements and Organic Carbon to the Sea by Pristine Temperate Rivers (SW Europe). Environ. Chem. 10 (1), 42–53. doi:10.1071/en12123
- Bol, R., Gruau, G., Mellander, P., Dupas, R., Bechmann, M., Skarbøvik, E., et al. (2018). Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Front. Mar. Sci. 5, 276. doi:10. 3389/fmars.2018.00276
- Bouraoui, F., and Malagó, A. (2020). Trend Analysis of Nitrate Concentration in Rivers in Southern France. Water 12 (12), 3374. doi:10.3390/w12123374
- Camargo, J. A., and Alonso, Á. (2006). Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems: a Global Assessment. Environ. Int. 32 (6), 831–849. doi:10.1016/j.envint.2006.05.002
- Carleton, J. N., Park, R. A., and Clough, J. S. (2009). Ecosystem Modeling Applied to Nutrient Criteria Development in Rivers. Environ. Manage 44 (3), 485–492. doi:10.1007/s00267-009-9344-2
- Carvalho, L., Mackay, E. B., Cardoso, A. C., Baattrup-Pedersen, A., Birk, S., Blackstock, K. L., et al. (2019). Protecting and Restoring Europe’s Waters: An Analysis of the Future Development Needs of the Water Framework Directive. Sci. Total Environ. 658, 1228–1238. doi:10.1016/j.scitotenv.2018.12.255
- de Vries, W., Kros, J., Kroeze, C., and Seitzinger, S. P. (2013). Assessing Planetary and Regional Nitrogen Boundaries Related to Food Security and Adverse Environmental Impacts. Curr. Opin. Environ. Sustain. 5 (3-4), 392–402. doi:10.1016/j.cosust.2013.07.004
- Directive, W. F. (2000). Water Framework Directive. J. Ref. OJL 327, 1–73.
- Dou, Y., Cosentino, F., Malek, Z., Maiorano, L., Thuiller, W., and Verburg, P. H. (2021). A New European Land Systems Representation Accounting for Landscape Characteristics. Landsc. Ecol. 36 (8), 2215–2234. doi:10.1007/s10980-021-01227-5
- Dupas, R., Abbott, B. W., Minaudo, C., and Fovet, O. (2019). Distribution of Landscape Units within Catchments Influences Nutrient Export Dynamics. Front. Environ. Sci. 7, 43. doi:10.3389/fenvs.2019.00043
- Dupas, R., Mellander, P., Gascuel-Odoux, C., Fovet, O., McAleer, E. B., McDonald, N. T., et al. (2017). The Role of Mobilisation and Delivery Processes on Contrasting Dissolved Nitrogen and Phosphorus Exports in Groundwater Fed Catchments. Sci. Total Environ. 599, 1275–1287. doi:10.1016/j.scitotenv.2017.05.091
- Ehrhardt, S., Ebeling, P., Dupas, R., Kumar, R., Fleckenstein, J. H., and Musolff, A. (2021). Nitrate Transport and Retention in Western European Catchments Are Shaped by Hydroclimate and Subsurface Properties. Water Resour. Res. 57 (10), e2020WR029469. doi:10.1029/2020wr029469
- Ekholm, P., Rankinen, K., Rita, H., Räike, A., Sjöblom, H., Raateland, A., et al. (2015). Phosphorus and Nitrogen Fluxes Carried by 21 Finnish Agricultural Rivers in 1985–2006. Environ. Monit. Assess. 187 (4), 216–217. doi:10.1007/ s10661-015-4417-6
- European Environment Agency (2018). European Waters Assessment. EEA Report N° 7/2018. Copenhage, Denmark: EEA.
- Fovet, O., Ruiz, L., Faucheux, M., Molénat, J., Sekhar, M., Vertès, F., et al. (2015). Using Long Time Series of Agricultural-Derived Nitrates for Estimating Catchment Transit Times. J. Hydrology 522, 603–617. doi:10.1016/j.jhydrol.2015.01.030
- Garzon-Vidueira, R., Rial-Otero, R., Garcia-Nocelo, M. L., Rivas-Gonzalez, E., Moure-Gonzalez, D., Fompedriña-Roca, D., et al. (2020). Identification of Nitrates Origin in Limia River Basin and Pollution-Determinant Factors. Agric. Ecosyst. Environ. 290, 106775.
- Grizzetti, B., Vigiak, O., Udias, A., Aloe, A., Zanni, M., Bouraoui, F., et al. (2021). How EU Policies Could Reduce Nutrient Pollution in European Inland and Coastal Waters. Glob. Environ. Change 69, 102281. doi:10.1016/j.gloenvcha. 2021.102281
- Gustard, A., Bullock, A., and Dixon, J. M. (1992). Low Flow Estimation in the United Kingdom. England: Institute of Hydrology, 19.
- IGME (Instituto Tecnológico Geominero de España) (1981). Mapa Geológico de España, 1:50,000. Betanzos Spain. Hoja 45.
- INE (2019). Nomenclator: Población del padrón continuo por unidad poblacional. Madrid: Instituto Estadístico de España.
- Iuss Working Group Wrb (2014). in International Soil Clasification System for Naming Soils and Creating Legends for Soil Maps (Rome: World Soil Resources Reports. N° 106FAO).World Reference Base for Soil Resources.
- Kelly, M. G., Phillips, G., Teixeira, H., Várbíró, G., Herrero, F. S., Willby, N. J., et al. (2022). Establishing Ecologically-Relevant Nutrient Thresholds: A Tool-Kit with Guidance on its Use. Sci. Total Environ. 807, 150977. doi:10.1016/j. scitotenv.2021.150977
- Kumar, S., Merwade, V., Kam, J., and Thurner, K. (2009). Streamflow Trends in Indiana: Effects of Long Term Persistence, Precipitation and Subsurface Drains. J. Hydroloy 374 (1-2), 171–183. doi:10.1016/j.jhydrol.2009.06.012
- Lassaletta, L., García-Gómez, H., Gimeno, B. S., and Rovira, J. V. (2009). Agriculture-induced Increase in Nitrate Concentrations in Stream Waters of a Large Mediterranean Catchment over 25 Years (1981–2005). Sci. Total Environ. 407 (23), 6034–6043. doi:10.1016/j.scitotenv.2009.08.002
- Linsely, R. K., Kohler, M. A., and Paulhus, J. C. (1949). Applied Hydrology. New York: McGraw-Hill Book Co.
- Macías, F., Álvarez Rodríguez, E., and Calvo de Anta, R. (1991). Impactos de origen agrario y urbano en la cuenca del río Ulla. Ecología 5, 73–86.
- Meybeck, M. (1982). Carbon, Nitrogen, and Phosphorus Transport by World Rivers. Am. J. Sci. 282 (4), 401–450. doi:10.2475/ajs.282.4.401
- Minaudo, C., Meybeck, M., Moatar, F., Gassama, N., and Curie, F. (2015). Eutrophication Mitigation in Rivers: 30 Years of Trends in Spatial and Seasonal Patterns of Biogeochemistry of the Loire River (1980–2012). Biogeosciences 12 (8), 2549–2563. doi:10.5194/bg-12-2549-2015
- Moatar, F., Abbott, B. W., Minaudo, C., Curie, F., and Pinay, G. (2017). Elemental Properties, Hydrology, and Biology Interact to Shape Concentration-discharge Curves for Carbon, Nutrients, Sediment, and Major Ions. Water Resour. Res. 53 (2), 1270–1287. doi:10.1002/2016wr019635
- Murphy, J., and Riley, J. P. (1962). A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 27, 31–36. doi:10.1016/s0003-2670(00)88444-5
- Naves, A., Samper, J., Mon, A., Pisani, B., Montenegro, L., and Carvalho, J. M. (2019). Demonstrative Actions of Spring Restoration and Groundwater Protection in Rural Areas of Abegondo (Galicia, Spain). Sustain. Water Resour. Manag. 5 (1), 175–186. doi:10.1007/s40899-017-0169-5
- OECD (2007). OECD Regions at a Glance. Paris: OECD Publishing, 252.
- Oenema, O., van Liere, L., and Schoumans, O. (2005). Effects of Lowering Nitrogen and Phosphorus Surpluses in Agriculture on the Quality of Groundwater and Surface Water in the Netherlands. J. Hydrology 304 (1-4), 289–301. doi:10.1016/ j.jhydrol.2004.07.044
- Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., et al. (2015). The New Assessment of Soil Loss by Water Erosion in Europe. Environ Sci Policy 54, 438–447. doi:10.1016/j.envsci.2015.08.012
- Poikane, S., Várbíró, G., Kelly, M. G., Birk, S., and Phillips, G. (2021). Estimating River Nutrient Concentrations Consistent with Good Ecological Condition: More Stringent Nutrient Thresholds Needed. Ecol. Ind. 121, 107017. doi:10. 1016/j.ecolind.2020.107017
- Rodríguez-Blanco, M. L., Taboada-Castro, M. M., and Taboada-Castro, M. T. (2020). An Assessment of the Recent Evolution of the Streamflow in a NearNatural System: A Case Study in the Headwaters of the Mero Basin (Galicia, Spain). Hydrology 7 (4), 97. doi:10.3390/hydrology7040097
- Rodríguez-Blanco, M. L., Taboada-Castro, M. M., and Taboada-Castro, M. T. (2019). An Overview of Patterns and Dynamics of Suspended Sediment Transport in an Agroforest Headwater System in Humid Climate: Results from a Long-Term Monitoring. Sci. Total Environ. 648, 33–43. doi:10.1016/j. scitotenv.2018.08.118
- Rodríguez-Blanco, M. L., Taboada-Castro, M. M., and Taboada-Castro, M. T. (2013). Phosphorus Transport into a Stream Draining from a Mixed Land Use Catchment in Galicia (NW Spain): Significance of Runoff Events. J. Hydrology 481, 12–21. doi:10.1016/j.jhydrol.2012.11.046
- Rodríguez-Blanco, M. L., Taboada-Castro, M. M., Taboada-Castro, M. T., and Oropeza-Mota, J. L. (2015). Relating Nitrogen Export Patterns from a Mixed Land Use Catchment in NW Spain with Rainfall and Streamflow. Hydrol. Process 29 (12), 2720–2730. doi:10.1002/hyp.10388
- Serrano, L., Palleiro, L., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., and Taboada-Castro, M. T. (2015). Preliminary Assessment of the Riverine Nitrogen Concentration and Load in an Agroforestry Basin in NW Spain. Commun. Soil Sci. Plant Anal. 46, 326–331. doi:10.1080/00103624.2014. 989071
- Sharpley, A. N., Kleinman, P. J., Heathwaite, A. L., Gburek, W. J., Folmar, G. J., and Schmidt, J. P. (2008). Phosphorus Loss from an Agricultural Watershed as a Function of Storm Size. J. Environ. Qual. 37 (2), 362–368. doi:10.2134/jeq2007. 0366
- Withers, P. J., and Lord, E. I. (2002). Agricultural Nutrient Inputs to Rivers and Groundwaters in the UK: Policy, Environmental Management and Research Needs. Sci. Total Environ. 282, 9–24. doi:10.1016/s0048-9697(01) 00935-4
- Worrall, F., Jarvie, H. P., Howden, N. J., and Burt, T. P. (2016). The Fluvial Flux of Total Reactive and Total Phosphorus from the UK in the Context of a National Phosphorus Budget: Comparing UK River Fluxes with Phosphorus Trade Imports and Exports. Biogeochemistry whit130 (1), 31–51. doi:10.1007/ s10533-016-0238-0