Microbial Communities as Affected by Clarithromycin Addition in Four Acid Soils (NW Iberian Peninsula)

  1. Laura Rodríguez-González 1
  2. Elena García-Campos 2
  3. Ángela Martín 3
  4. Montserrat Díaz-Raviña 3
  5. Manuel Arias Estévez 1
  6. David Fernández Calviño 1
  7. Vanesa Santás Miguel 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  2. 2 Misión Biolóxica de Galicia (Santiago de Compostela)
  3. 3 Misión Biológica de Galicia (Santiago de Compostela)
Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Ano de publicación: 2023

Volume: 13

Número: 1

Tipo: Artigo

DOI: 10.3389/SJSS.2023.11319 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Spanish Journal of Soil Science: SJSS

Resumo

A laboratory experiment was carried out to investigate the response of the microbial communities in acid agricultural soils located in the NW Iberian Peninsula to the presence of clarithromycin. Four soils, with different organic C content and similar pH, and seven different concentrations of clarithromycin (0.49, 1.95, 7.81, 31.25, 125, 500 and 2,000 mg kg−1 of soil) were used, and microbial estimates were made after 8 and 42 incubation days. The phospholipid fatty acids (PLFA) technique was used to estimate the total microbial biomass and biomass of specific microbial groups as well as the microbial community structure (PLFA pattern). The microbial biomass (total and specific groups) was different in the four studied soils, the lowest values being exhibited by soils with the lowest organic C. The antibiotic addition showed a positive effect on microbial biomass (total and specific groups), especially at the highest dose; the effect being similar or even more accentuated with time passed after the addition (42 days ≥8 days). Principal component analysis (PCA) of the PLFA data carried out with the whole data set showed that the main determining factors of the microbial structure followed the order: soil > time incubation ≥ antibiotic dose. When the PCA was performed individually for each incubation time, the results indicated that microbial communities of the four soils were different. Likewise, for each soil, different microbial communities were observed depending on antibiotic concentration. The microbial biomass and PLFA pattern data were coincidentally showing that the clarithromycin addition favored fungi and G− bacteria more that bacteria and G+ bacteria; the effect being dose-dependent. Our data (microbial biomass, PLFA pattern) also demonstrated that the effect of clarithromycin addition on microbial communities in these four acid agricultural soils persisted even after 42 incubation days.

Información de financiamento

Referencias bibliográficas

  • Aydin, S., Ulvi, A., Bedük, F., and Aydin, M. E. (2022). Pharmaceutical Residues in Digested Sewage Sludge: Occurrence, Seasonal Variation and Risk Assessment for Soil. Sci. Total Environ. 817, 152864. doi:10.1016/j.scitotenv.2021.152864
  • Barreiro, A., Fontúrbel, M. T., Lombao, A., Martín, A., Vega, J. A., Carballas, T., et al. (2015). Using Phospholipid Fatty Acid and Community Level Physiological Profiling Techniques to Characterize Soil Microbial Communities Following an Experimental Fire and Different Stabilization Treatments. Catena 135, 419–429. doi:10.1016/j.catena.2014.07.011
  • Barriuso, E., and Houot, S. (1996). Rapid Meneralization of the S-Triazine Ring of Atrazine in Soils in Relation to Soil Management. Soil Biol. Biochem. 28, 1341–1348. doi:10.1016/S0038-0717(96)00144-7
  • Bastos, M. C., Soubrand, M., Guet, T. L., Floch, É. L., Baudu, M., Casellas, M., et al. (2020). Occurrence, Fate and Environmental Risk Assessment of Pharmaceutical Compounds in Soils Amended with Organic Wastes. Geoderma 375, 114498. doi:10.1016/j.geoderma.2020.114498
  • Baumann, M., Weiss, K., Maletzki, D., Schüssler, W., Schudoma, D., Kopf, W., et al. (2015). Aquatic Toxicity of the Macrolide Antibiotic Clarithromycin and its Metabolites. Chemosphere 120, 192–198. doi:10.1016/j.chemosphere.2014.05.089
  • Biel-Maeso, M., Corada-Fernández, C., and Lara-Martín, P. A. (2018). Monitoring the Occurrence of Pharmaceuticals in Soils Irrigated with Reclaimed Wastewater. Environ. Pollut. 235, 312–321. doi:10.1016/j.envpol.2017.12.085
  • Bolesta, W., Głodniok, M., and Styszko, K. (2022). From Sewage Sludge to the Soil—Transfer of Pharmaceuticals: a Review. Int. J. Environ. Res. Public Health. 19, 10246. doi:10.3390/ijerph191610246
  • Bossio, D. A., Scow, K. M., Gunapala, N., and Graham, K. J. (1998). Determinants of Soil Microbial Communities: Effects of Agricultural Management, Season, and Soil Type on Phospholipid Fatty Acid Profiles. Microb. Ecol. 36, 1–12. doi:10.1007/s002489900087
  • Caracciolo, A. B., Topp, E., and Grenni, P. (2015). Pharmaceuticals in the Environment: Biodegradation and Effects on Natural Microbial Communities. A Rev. Pharm. Biomed. Anal. 106, 25–36. doi:10.1016/j.jpba.2014.11.040
  • Carballas, T., Rodríguez-Rastrero, M., Artieta, O., Gumuzzio, J., Díaz-Raviña, M., Martín, A., et al. (2015). “Soils of Temperate Humid Zone,” Editorial in The Soils of Spain (Switzerland: Springer), 49–144. Lancho, Coord.
  • Chen, W., Liu, W., Pan, N., Jiao, W., and Wang, M. (2013). Oxytetracycline on Functions and Structure of Soil Microbial Community. J. Soil. Sc. Plant Nutr. 13, 0–975. doi:10.4067/S0718-95162013005000076
  • Conde-Cid, M., Álvarez-Esmorís, C., Paradelo-Nuñez, R., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Álvarez-Rodríguez, E., et al. (2018). Occurrence of Tetracyclines and Sulfonamides in Manures, Agricultural Soils and Crops from Different Areas in Galicia (NW Spain). J. Clean. Prod. 197, 491–500. doi:10.1016/j.jclepro.2018.06.217
  • Cordova-Kreylos, A. L., and Scow, K. M. (2007). Effects of Ciprofloxacin on Salt Marsh Sediment Microbial Communities. ISME J 1 (7), 585–595. doi:10.1038/ismej.2007.71
  • Cui, H., Wang, S. P., Fu, J., Zhou, Z. Q., Zhang, N., and Guo, L. (2014). Influence of Ciprofloxacin on Microbial Community Structure and Function in Soils. Biol. Fertil. Soils. 50 (6), 939–947. doi:10.1007/s00374-014-0914-y
  • Cycón, M., Mrozik, A., and Piotrowska-Seget, Z. (2019). Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 10, 338. doi:10.3389/fmicb.2019.00338
  • De Nobili, M., Contin, M., Mondini, C., and Brookes, P. C. (2001). Soil Microbial Biomass Is Triggered into Activity by Trace Amounts of Substrate. Soil Biol. biochem. 32, 1163–1170. doi:10.1016/S0038-0717(01)00020-7
  • Díaz-Raviña, M., and Bååth, E. (1996). Thymidine and Leucine Incorporation into Bacteria from Soils Experimentally Contaminated with Heavy Metals. Appl. Soil Ecol. 3, 225–234. doi:10.1016/0929-1393(95)00086-0
  • Díaz-Raviña, M., Carballas, T., and Acea, M. J. (1988). Microbial Biomass and Metabolic Activity in Four Acid Soils. Soil Biol. Biochem. 20, 817–823. doi:10.1016/0038-0717(88)90087-9
  • Díaz-Raviña, M., Acea, M. J., and Carballas, T. (1993). Microbial Biomass and its Contribution to Nutrient Concentrations in Forest Soils. Soil Biol. biochem. 25, 25–31. doi:10.1016/0038-0717(93)90237-6
  • Díaz-Raviña, M., Bååth, E., Martín, A., and Carballas, T. (2006). Microbial Community Structure in Forest Soils Treated with a Fire Retardant. Biol. Fertil. Soils 42 (6), 465–471. doi:10.1007/s00374-005-0036-7
  • Díaz-Raviña, M., Lombao, A., Barreiro, A., Martín, A., and Carballas, T. (2018). Medium-term Impact of Post-fire Emergency Rehabilitation Techniques on a Shrubland Ecosystems in Galicia (NW Spain). Span. J. Soil Sci. 8, 322–346.
  • European Centre for Disease Prevention and Control (ECDC) (2018). “Surveillance Report,” in Annual Epidemiological Report for 2016; Antimicrobial Consumption (Sweden: ECDC: Solna Municipality).
  • Fernández-Calviño, D., Martín, A., Arias-Estévez, M., Bååth, E., and Díaz-Raviña, M. (2010). Microbial Community Structure of Vineyard Soils with Different pH and Copper Content. Appl. Soil Ecol. 46, 276–282. doi:10.1016/j.apsoil.2010.08.001
  • Fijalkowski, K., Rorat, A., Grobelak, A., and Kacprzak, M. J. (2017). The Presence of Contaminations in Sewage Sludge. The Current Situation. J. Environ. Manag. 203, 1126–1136. doi:10.1016/j.jenvman.2017.05.068
  • Frostegård, A., Bååth, E., and Tunlip, A. (1993). Shifts in the Structure of Soil Microbial Communities in Limed Forests as Revealed by Phospholipid Fatty Acid Analysis. Soil Biol. Biochem. 25, 723–730. doi:10.1016/0038-0717(93)90113-P
  • Gworek, B., Kijeéwska, M., Wrzosek, J., and Graniewska, M. (2021). Pharmaceuticals in the Soil and Plant Environment: a Review. Water Air Soil Pollut. 232, 145. doi:10.1007/s11270-020-04954-8
  • Hammesfahr, U., Heuer, H., Manzke, B., Smalla, K., and Thiele-Bruhn, S. (2008). Impact of the Antibiotic Sulfadiazine and Pig Manure on the Microbial Community Structure in Agricultural Soils. Soil Biol. Biochem. 40 (7), 1583–1591. doi:10.1016/j.soilbio.2008.01.010
  • Kodešová, R., Kočárek, M., Klement, A., Golovko, O., Koba, O., Fér, M., et al. (2016). An Analysis of the Dissipation of Pharmaceuticals under Thirteen Different Soil Conditions. Sci. Total Environ. 544, 369–381. doi:10.1016/j.scitotenv.2015.11.085
  • Kümmerer, K. (2009). Antibiotics in the Aquatic Environment—A Review—Part I. Chemosphere 75, 417–434. doi:10.1016/j.chemosphere.2008.11.086
  • Lau, C. H. L., Tien, Y. C., Stedtfeld, R. D., and Topp, E. (2020). Impacts of Multi-Year Field Exposure of Agricultural Soil to Macrolide Antibiotics on the Abundance of Antibiotic Resistance Genes and Selected Mobile Genetic Elements. Sci. Total Environ. 727, 138520. doi:10.1016/j.scitotenv.2020.138520
  • Leirós, M. C., Trasar-Cepeda, C., Seoane, S., and Gil-Sotres, F. (2000). Biochemical Properties of Acid Soils under Climax Vegetation (Atlantic Oakwood) in an Area of the European Temperate–Humid Zone (Galicia, NW Spain): General Parameters. Soil Biol. Biochem. 32, 733–745. doi:10.1016/S0038-0717(99)00195-9
  • Li, W. C. (2014). Occurrence, Sources, and Fate of Pharmaceuticals in Aquatic Environment and Soil. Environ. Pollut. 187, 193–201. doi:10.1016/j.envpol.2014.01.015
  • Liao, X., Li, B., Zou, R., Dai, Y., Xie, S., and Yuan, B. (2016). Biodegradation of Antibiotic Ciprofloxacin: Pathways, Influential Factors, and Bacterial Community Structure. Environ. Sci. Pollut. Res. 23 (8), 7911–7918. doi:10.1007/s11356-016-6054-1
  • Lombao, A., Díaz-Raviña, M., Martín, M., Fontúrbel, M. T., Vega, J. A., Fernández, C., et al. (2015). Influence of Straw Mulch Application on the Properties of a Soil Affected by a Forest Wildfire. J. Soil Sci. 5, 26–40. doi:10.3232/SJSS.2015.V5.N1.03
  • Madikizela, L. M., Ncube, S. B., and Chimuka, L. (2018). Uptake of Pharmaceuticals by Plants Grown under Hydroponic Conditions and Natural Occurring Plant Species: A Review. Sci. Total Environ. 636, 477–486. doi:10.1016/j.scitotenv.2018.04.297
  • Mahía, J., Cabaneiro, A., Carballas, T., and Díaz-Raviña, M. (2008). Microbial Biomass and C Mineralization in Agricultural Soils as Affected by Atrazine Addition. Biol. Fertil. Soils 45, 99–105. doi:10.1007/s00374-008-0318-y
  • Mahía, J., González-Prieto, S. J., Martín, A., Bååth, E., and Díaz-Raviña, M. (2011). Biochemical Properties and Microbial Community Structure of Five Different Soils after Atrazine Addition. Biol. Fertil. Soils 47 (5), 577–589. doi:10.1007/s00374-011-0569-x
  • McLaughlin, A., and Belknap, A. (2008). Annual Kg Quantity of Medicinal Ingredients Distributed and Dispensedin Canada: Analysis if Intercontinental Medical Stadistics (IMS) Data for 2007. Excel Formal data. Environmental Impact Initiative, HPFB, Health Canada.
  • Meisner, A., Bååth, E., and Rousk, J., (2013). Microbial Growth Responses upon Rewetting Soil Dried for Four Days or One Year. Soil Biol. biochem. 66, 188–192. doi:10.1016/j.soilbio.2013.07.014
  • Mejías, C., Martín, J., Santos, J. L., Aparicio, I., and Alonso, E. (2021). Ocurrence of Pharmaceuthicals and Their Metabolites in Sewagw Sludge and Soil: a Review on Their Distribution and Environmental Risk Assessment. Trends Environ. Anal. Chem. 30, e00125. doi:10.1016/j.teac.2021.e00125
  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., and Renella, G. (2003). Microbial Diversity and Soil Functions. Eur. J. Soil Sci. 54, 655–670. doi:10.1046/j.1351-0754.2003.0556.x
  • Nuñez-Delgado, A., Zhou, A., Necibi, C., Xu, Y., and Fernández-Calviño, D. (2019). Editorial of the VSI “Antibiotics and Heavy Metals in the Environment: Facing the Challenge”. Sci. Total Environ. 678, 30–32. doi:10.1016/j.scitotenv.2019.04.421
  • Pan, M., and Chu, L. M. (2017). Fate of Antibiotics in Soil and Their Uptake by Edible Crops. Sci. Total Environ. 599, 500–512. doi:10.1016/j.scitotenv.2017.04.214
  • Pankhurst, C. E., Ophel-Keller, K., Doube, B. M., and Gupta, V. V. S. R. (1996). Biodiversity of Soil Microbial Communities in Agricultural Systems. Biodivers. Conserv. 5, 197–209. doi:10.1007/BF00055830
  • Rajapaksha, R. M. C. P., Tobor-Kaplon, M. A., and Bååth, E. (2004). Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently. Appl. Environ. Microbiol. 70, 2966–2973. doi:10.1128/AEM.70.5.2966-2973.2004
  • Rodríguez-González, L., Santás-Miguel, V., Campillo-Cora, C., Arias-Estévez, M., and Fernández-Calviño, D. (2021). The Effect of Clarithromycin Toxicity on the Growth of Bacterial Communities in Agricultural Soils. Processes 9 (8), 1303. doi:10.3390/pr9081303
  • Rodríguez-González, L., Nuñez-Delgado, A., Álvarez-Rodríguez, E., García-Campos, E., Martín, A., Díaz-Raviña, M., et al. (2022). Effects of Ciprofloxacin, Trimethoprim, and Amoxicillin on Microbial Structure and Growth as Emerging Pollutants Reaching Crop Soils. Environ. Res. 214, 113916. doi:10.1016/j.envres.2022.113916
  • Rodríguez-González, L., Nuñez-Delgado, A., Álvarez-Rodríguez, E., Díaz-Raviña, M., Arias-Estévez, M., Fernández-Calviño, D., et al. (2023). Direct Toxicity of Six Antibiotics on Soil Bacterial Communities Affected by the Addition of Bio-Adsorbents. Environ. Pollut. 322, 121161. doi:10.1016/j.envpol.2023.121161
  • Santás-Miguel, V., Arias-Estévez, M., Díaz-Raviña, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., Núñez-Delgado, A., et al. (2020a). Effect of Oxytetracycline and Chlortetracycline on Bacterial Community Growth in Agricultural Soils. Agronomy 10 (7), 1011. doi:10.3390/agronomy10071011
  • Santás-Miguel, V., Díaz-Raviña, M., Martín, A., García-Campos, E., Barreiro, A., Núñez-Delgado, A., et al. (2020b). Medium-term Influence of Tetracyclines on Total and Specific Microbial Biomass in Cultivated Soils of Galicia (NW Spain). Span. J. Soil Sci. 10 (3), 217–232. doi:10.3232/SJSS.2020.V10.N3.05
  • Santás-Miguel, V., Rodríguez-González, L., Núñez-Delgado, A., Díaz-Raviña, M., Arias-Estévez, M., and Fernández-Calviño, D. (2020c). The Toxicity Exerted by the Antibiotic Sulfadiazine on the Growth of Soil Bacterial Communities May Increase over Time. Int. J. Environ. Res. Public Health 17 (23), 8773. doi:10.3390/ijerph17238773
  • Santás-Miguel, V., Díaz-Raviña, M., Martín, A., García-Campos, E., Barreiro, A., Núñez-Delgado, A., et al. (2021). Soil Enzymatic Activities and Microbial Community Structure in Soils Polluted with Tetracycline Antibiotics. Agronomy 11, 906. doi:10.3390/agronomy11050906
  • Santás-Miguel, V., Rodríguez-González, L., Núñez-Delgado, A., Álvarez-Rodríguez, E., Díaz-Raviña, M., Arias-Estévez, M., et al. (2022). Time-course Evolution of Bacterial Community Tolerance to Tetracycline Antibiotics in Agricultural Soils: A Laboratory Experiment. Chemosphere 291, 132758. doi:10.1016/j.chemosphere.2021.132758
  • Schofield, C. J. (2018). Antibiotics as Food for Bacteria. Nat. Microbiol. 3 (7), 752–753. doi:10.1038/s41564-018-0181-z
  • Senta, I., Kostanjevecki, P., Kritzman-Matasic, I., Terzic, S., and Ahel, M. (2019). Occurrence and Behavior of Macrolide Antibiotics in Municipal Wastewater Treatment: Possible Importance of Metabolites, Synthesis Byproducts, and Transformation Products. Environ. Sci. Technol. 53, 7463–7472. doi:10.1021/acs.est.9b01420
  • Tasho, R. P., and Cho, J. Y. (2016). Veterinary Antibiotics in Animal Waste, its Distribution in Soil and Uptake by Plants: A Review. Sci. Total Environ. 563, 366–376. doi:10.1016/j.scitotenv.2016.04.140
  • Thiele-Bruhn, S., and Beck, I. (2005). Effects of Sulfonamide and Tetracycline Antibiotics on Soil Microbial Activity and Microbial Biomass. Chemosphere 59, 457–465. doi:10.1016/j.chemosphere.2005.01.023
  • Thiele-Bruhn, S. (2003). Pharmaceutical Antibiotic Compounds in Soils – a Review. J. Plant Nutr. Soil Sci. 166, 145–167. doi:10.1002/jpln.200390023
  • Topp, E., Renaud, J., Surumah, M., and Sabourin, L. (2016). Reduced Persistence of the Macrolide Antibiotics Erythromycin, Clarithromycin and Azithromycin in Agricultural Soil Following Several Years of Exposure in the Field. Sci. Total Environ. 562, 136–144. doi:10.1016/j.scitotenv.2016.03.210
  • Unger, I. M., Goyne, K. W., Kennedy, A. C., Kremer, R. J., McLain, J. E. T., and Williams, C. F. (2012). Antibiotic Effects on Microbial Community Characteristics in Soils under Conservation Management Practices. Soil Sci. Soc. Am. J. 77, 100–112. doi:10.2136/sssaj2012.0099
  • World Health Organization (2017). “Critically Important Antimicrobials for Human Medicine 5th Revision 2016,” in Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Tesistance Due to Non-human Use Uull (Geneva, Switzerland: World Health Organization).
  • Yin, L., Wang, X., Li, Y., Liu, Z., Mei, Q., and Chen, Z. (2023). Uptake of the Plant Agriculture-Used Antibiotics Oxytetracycline and Streptomycin by Cherry Radish─ Effect on Plant Microbiome and the Potential Health Risk. J. Agric. Food Chem. 71, 4561–4570. doi:10.1021/acs.jafc.3c01052