Mercury Content and Pools in Complex Polycyclic Soils From a Mountainous Area in Galicia (NW Iberian Peninsula)

  1. Antía Gómez Armesto 1
  2. Melissa Méndez-López 1
  3. Andrea Parente-Sendín 1
  4. Noemi Calvo-Portela 1
  5. Xabier Pontevedra-Pombal 2
  6. Eduardo García-Rodeja 1
  7. Flora Alonso-Vega 1
  8. Juan Carlos Nóvoa-Muñoz 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Ano de publicación: 2023

Volume: 13

Número: 1

Tipo: Artigo

DOI: 10.3389/SJSS.2023.11192 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Spanish Journal of Soil Science: SJSS

Resumo

Atmospheric mercury (Hg) usually tends to accumulate in the upper horizons of soils. However, the physico-chemical characteristics of some soils, as well as pedogenetic processes, past climate changes, or soil degradation processes, can lead to a redistribution of mercury through the soil profile. In this work, the presence and accumulation of mercury was studied in three deep polycyclic soils from a mountainous area in NW Iberia Peninsula. The highest total Hg values (HgT) were found in the organic matter-rich O and A horizons of FL and MF profiles (169 and 139 μg kg−1 , respectively) and in the illuvial horizon of RV (129.2 μg kg−1 ), with the latter two samples showing the maximum Hg reservoirs (29.3 and 29.0 mg m−2 , respectively). Despite finding the highest Hg content in the surface horizons, considerable Hg reservoirs were also observed in depths higher than 40–50 cm, indicating the importance of taking into account these soil layers when Hg pools are evaluated at a global scale. Based on the mass transfer coefficients, we can rule out the contribution of parent material to the Hg accumulation in most of the horizons, thus indicating that pedogenetic processes are responsible for the Hg redistribution observed along the soil profiles. Finally, by means of principal component analysis (PCA) and stepwise linear regression we could assess the main soil components involved in the Hg accumulation in each soil horizon. Therefore, PC1 (organic matter and low stability Alhummus complexes) showed a higher influence on the surface horizons, whereas PC2 (reactive Al-Fe complexes and medium-high Al-hummus complexes) and PC4 (crystalline Fe compounds and pHw) were more relevant in the Hg distribution observed in the deepest soil layers.

Referencias bibliográficas

  • Abdi, H., and Williams, L. J. (2010). Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459. doi:10.1002/wics.101
  • Álvarez, E., Monterroso, C., and Fernández Marcos, M. L. (2002). Aluminium Fractionation in Galician (NW Spain) Forest Soils as Related to Vegetation and Parent Material. For. Ecol. Manag. 166, 193–206. doi:10.1016/S0378-1127(01)00658-2
  • Amos, H. M., Jacob, D. J., Streets, D. G., and Sunderland, E. M. (2013). Legacy Impacts of All-Time Anthropogenic Emissions on the Global Mercury Cycle. Glob. Biogeochem. Cycle 27, 410–421. doi:10.1002/gbc.20040
  • Ballabio, C., Jiskra, M., Osterwalder, S., Borrelli, P., Montanarella, L., and Panagos, P. (2021). A Spatial Assessment of Mercury Content in the European Union Topsoil. Sci. Total Environ. 769, 144755. doi:10.1016/j.scitotenv.2020.144755
  • Blackwell, B. D., and Driscoll, C. T. (2015). Deposition of Mercury in Forests along a Montane Elevation Gradient. Environ. Sci. Technol. 49, 5363–5370. doi:10.1021/es505928w
  • Bloom, P. R., McBride, M. B., and Weaver, R. M. (1979). Aluminum Organic Matter in Acid Soils: Salt-Extractable Aluminum. Soil Sci. Soc. Am. J. 43, 813–815. doi:10.2136/sssaj1979.03615995004300040041x
  • Canarache, A., Vintila, I., and Munteanu, I. (2006). Elsevier’s Dictionary of Soil Science: Definitions in English with French, German, and Spanish Word Translations. 1st. Amsterdam: Elsevier Science, 1354.
  • Clarkson, T. W., and Magos, L. (2006). The Toxicology of Mercury and its Chemical Compounds. Crit. Rev. Toxicol. 36 (8), 609–662. doi:10.1080/10408440600845619
  • Cutillas-Barreiro, L., Pérez-Rodríguez, P., Gómez-Armesto, A., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., Núñez-Delgado, A., et al. (2016). Lithological and Land-Use Based Assessment of Heavy Metal Pollution in Soils Surrounding a Cement Plant in SW Europe. Sci. Total Environ. 562, 179–190. doi:10.1016/j.scitotenv.2016.03.198
  • Demers, J. D., Driscoll, C. T., Fahey, T. J., and Yavitt, J. B. (2007). Mercury Cycling in Litter and Soil in Different Forest Types in the Adirondack Region, New York, USA, Ecol. Appl. 17-5, 1341–1351. doi:10.1890/06-1697.1
  • Do Valle, C. M., Santana, G. P., Augusti, R., Egreja-Filho, F. B., and Windmöller, C. C. (2005). Speciation and Quantification of Mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58, 779–792. doi:10.1016/j.chemosphere.2004.09.005
  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N. (2013). Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 47, 4967–4983. doi:10.1021/es305071v
  • Du, B., Zhou, J., Zhou, L., Fan, X., and Zhou, J. (2019). Mercury Distribution in the Foliage and Soil Profiles of a Subtropical Forest: Process for Mercury Retention in Soils. J. Geochem. Explor. 205, 106337. doi:10.1016/j.gexplo.2019.106337
  • Eimil-Fraga, C., Álvarez-Rodríguez, E., Rodríguez-Soalleiro, R., and Fernández-Sanjurjo, M. J. (2015). Influence of Parent Material on the Aluminium Fractions in Acidic Soils under Pinus pinaster in Galicia (NW Spain). Geoderma 255-256, 50–57. doi:10.1016/j.geoderma.2015.04.026
  • Evans, G., Norton, S. A., Fernandez, I. J., Kahl, J. S., and Hanson, D. (2005). Changes in Concentrations of Major Elements and Trace Metals in Northeastern U.S.-Canadian Sub-alpine Forest Floors. Water Air Soil Pollut. 163, 245–267. doi:10.1007/s11270-005-0435-2
  • Ferro-Vázquez, C., Nóvoa-Muñoz, J. C., Costa-Casais, M., Klaminder, J., and Martínez-Cortizas, A. (2014). Metal and Organic Matter Immobilization in Temperate Podzols: A High Resolution Study. Geoderma 217-218, 225–234. doi:10.1016/j.geoderma.2013.10.006
  • Fiorentino, J. C., Enzweiler, J., and Angélica, R. S. (2011). Geochemistry of Mercury along a Soil Profile Compared to Other Elements and to the Parental Rock: Evidence of External Input. Water Air Soil Pollut. 221, 63–75. doi:10.1007/s11270-011-0769-x
  • Frey, B., and Rieder, S. R. (2013). Response of Forest Soil Bacterial Communities to Mercury Chloride Application. Soil Biol. Biochem. 65, 329–337. doi:10.1016/j.soilbio.2013.06.001
  • Friedli, H. R., Radke, L. F., Payne, N. J., McRae, D. J., Lynham, T. J., and Blake, T. W. (2007). Mercury in Vegetation and Organic Soil at an Upland Boreal Forest Site in Prince Albert National Park, Saskatchewan, Canada. J. Geophys. Res. 112, G01004. doi:10.1029/2005JG000061
  • Frossard, A., Hartmann, M., and Frey, B. (2017). Tolerance of the Forest Soil Microbiome to Increasing Mercury Concentrations. Soil Biol. Biochem. 105, 162–176. doi:10.1016/j.soilbio.2016.11.016
  • García-Rodeja, E., Nóvoa, J. C., Pontevedra, X., Martínez-Cortizas, A., and Buurman, P. (2004). Aluminium Fractionation of European Volcanic Soils by Selective Dissolution Techniques. Catena 56, 155–183. doi:10.1016/j.catena.2003.10.009
  • García-Rodeja, E., and Macías, F. (1986). Aplicación de técnicas de disolución selectiva al estudio de componentes no cristalinos de una secuencia de suelos sobre granito en la sierra de Ancares (Lugo, Galicia). An. Edaf. Agrob. 45, 347–366.
  • Gee, G. W., and Bauder, J. W. (1986). “Particle Size Analysis,” in Methods of Soil Analysis. Part A. Editor A. Klute (Madison: American Society of Agronomy), 383–411.
  • Gómez-Armesto, A., Martínez-Cortizas, A., Ferro-Vázquez, C., Méndez-López, M., Arias-Estévez, M., and Nóvoa-Muñoz, J. C. (2020). Modelling Hg Mobility in Podzols: Role of Soil Components and Environmental Implications. Environ. Pollut. 260, 114040. doi:10.1016/j.envpol.2020.114040
  • Gómez-Armesto, A., Méndez-López, M., Pontevedra-Pombal, X., García-Rodeja, X., Alonso-Vega, F., Arias-Estévez, M., et al. (2021a). Soil Properties Influencing Hg Vertical Pattern in Temperate Forest Podzols. Environ. Res. 193, 110552. doi:10.1016/j.envres.2020.110552
  • Gómez-Armesto, A., Méndez-López, M., Marques, P., Pontevedra-Pombal, X., Monteiro, F., Madeira, M., et al. (2021b). Patterning Total Mercury Distribution in Coastal Podzolic Soils from an Atlantic Area: Influence of Pedogenetic Processes and Soil Components. Catena 206, 105540. doi:10.1016/j.catena.2021.105540
  • Gruba, P., Socha, J., Pietrzykowski, M., and Pasichnyk, D. (2019). Tree Species Affects the Concentration of Total Mercury (Hg) in Forest Soils: Evidence from a Forest Soil Inventory in Poland. Sci. Total. Environ. 647, 141–148. doi:10.1016/j.scitotenv.2018.07.452
  • Guédron, S., Grangeon, S., Jouravel, G., Charlet, L., and Sarret, G. (2013). Atmospheric Mercury Incorporation in Soils of an Area Impacted by a Chlor-Alkali Plant (Grenoble, France): Contribution of Canopy Uptake. Sci. Total Environ. 445-446, 356–364. doi:10.1016/j.scitotenv.2012.12.084
  • Guédron, S., Grangeon, S., Lanson, B., and Grimaldi, M. (2009). Mercury Speciation in a Tropical Soil Association; Consequence of Gold Mining on Hg Distribution in French Guiana. Geoderma 153, 331–346. doi:10.1016/j.geoderma.2009.08.017
  • Guédron, S., Grimaldi, C., Chauvel, C., Spadini, L., and Grimaldi, M. (2006). Weathering versus Atmospheric Contributions to Mercury Concentrations in French Guiana Soils. Appl. Geochem. 21, 2010–2022. doi:10.1016/j.apgeochem.2006.08.011
  • Harris-Hellal, J., Vallaeys, T., Garnier-Zarli, E., and Bousserrhine, N. (2009). Effects of Mercury on Soil Microbial Communities in Tropical Soils of French Guyana. Appl. Soil Ecol. 41, 59–68. doi:10.1016/j.apsoil.2008.08.009
  • IUSS Working Group WRB (2014). International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 106. Rome: FAO, 181.
  • Juo, A. S. R., and Kamprath, E. J. (1979). Copper Chloride as an Extractant for Estimating the Potentially Reactive Aluminum Pool in Acid Soils. Soil Sci. Soc. Am. J. 43, 35–38. doi:10.2136/sssaj1979.03615995004300010006x
  • Kaal, J., Costa-Casais, M., Ferro-Vázquez, C., Pontevedra-Pombal, X., and Martínez-Cortizas, A. (2008). Soil Formation of “Atlantic Rankers” from NW Spain-A High Resolution Aluminium and Iron Fractionation Study. Pedosphere 18, 441–453. doi:10.1016/S1002-0160(08)60035-1
  • Khwaja, A. R., Bloom, P. R., and Brezonik, P. L. (2006). Binding Constants of Divalent Mercury (Hg2+) in Soil Humic Acids and Soil Organic Matter. Environ. Sci. Technol. 40, 844–849. doi:10.1021/es051085c
  • Kroonenberg, S., Wong, T., Bijnaar, G., Finkie, R., Goenopawiro, K., Asneel, S., et al. (2022). Mercury Background Values in Soils and Saprolites in the Gold-Rich Greenstone Belt of Suriname, Guiana Shield: The Role of Parent Rock and Residual Enrichment. Sci. Total Environ. 848, 157631. doi:10.1016/j.scitotenv.2022.157631
  • Lin, C., and Coleman, N. T. (1960). The Measurement of Exchangeable Aluminum in Soils and Clays. Soil Sci. Soc. Am. J. 24, 444–446. doi:10.2136/sssaj1960.03615995002400060009x
  • Liu, R. X., Kuang, J., Gong, Q., and Hou, X. L. (2003). Principal Component Regression Analysis with SPSS. Comput. Methods Progr. Biomed. 71, 141–147. doi:10.1016/S0169-2607(02)00058-5
  • Macías, F., Calvo, R., García-Rodeja, E., García, C., and Silva, B. (1982). El material original: su formación e influencia en las propiedades de los suelos de Galicia. An. Edafol. Agrobiol. 47: 1747–1768.
  • Mahbub, K. R., Krishnan, K., Naidu, R., Andrews, S., and Megharaj, M. (2017). Mercury Toxicity to Terrestrial Biota. Ecol. Indic. 74, 451–462. doi:10.1016/j.ecolind.2016.12.004
  • Méndez-López, M., Parente-Sendín, A., Calvo-Portela, N., Gómez-Armesto, A., Eimil-Fraga, C., Alonso-Vega, F., et al. (2023). Mercury in a Birch Forest in SW Europe: Deposition Flux by Litterfall and Pools in Aboveground Tree Biomass and Soils. Sci. Total Environ. 856, 158937. doi:10.1016/j.scitotenv.2022.158937
  • Nave, L. E., Covarrubias Ornelas, A., Drevnick, P. E., Gallo, A., Hatten, J. A., Heckman, K. A., et al. (2019). Carbon–mercury Interactions in Spodosols Assessed through Density Fractionation, Radiocarbon Analysis, and Soil Survey Information. Soil Sci. Soc. Am. J. 83, 190–202. doi:10.2136/sssaj2018.06.0227
  • Navrátil, T., Shanley, J., Rohovec, J., Hojdová, M., Penížek, V., and Buchtová, J. (2014). Distribution and Pools of Mercury in Czech Forest Soils. Water Air Soil Pollut. 225, 1829. doi:10.1007/s11270-013-1829-1
  • Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber, J., et al. (2017). Tundra Uptake of Atmospheric Elemental Mercury Drives Arctic Mercury Pollution. Nature 547, 201–204. doi:10.1038/nature22997
  • Obrist, D., Johnson, D. W., and Lindberg, S. E. (2009). Mercury Concentrations and Pools in Four Sierra Nevada Forest Sites, and Relationships to Organic Carbon and Nitrogen. Biogeosciences 6, 765–777. doi:10.5194/bg-6-765-2009
  • Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and Selin, N. E. (2018). A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio 47, 116–140. doi:10.1007/s13280-017-1004-9
  • Obrist, D. (2012). Mercury Distribution across 14 U.S. Forests. Part II: Patterns of Methyl Mercury Concentrations and Areal Mass of Total and Methyl Mercury. Environ. Sci. Technol. 46, 5921–5930. doi:10.1021/es2045579
  • Obrist, D., Pokharel, A. K., and Moore, C. (2014). Vertical Profile Measurements of Soil Air Suggest Immobilization of Gaseous Elemental Mercury in Mineral Soil. Environ. Sci. Technol. 48, 2242–2252. doi:10.1021/es4048297
  • Peech, M., Alexander, L. T., Dean, L. A., and Fielding Reed, J. (1947). Methods of Soil Analysis for Soil-Fertility Investigations. U.S. Dept. of Agriculture. Washington DC, 757.
  • Peiteado Varela, E., Piñeiro Rebolo, R., and Martínez Cortizas, A. (2002). Distribución de algunos elementos mayores (K, Ca, Ti,Fe) y traza (Ga, Rb, Sr, Y, Zr, Br) en dos suelos policíclicos podsólicos. Edafología 9, 61–84.
  • Peña-Rodríguez, S., Pontevedra-Pombal, X., Gayoso, E. G. R., Moretto, A., Mansilla, R., Cutillas-Barreiro, L., et al. (2014). Mercury distribution in a toposequence of sub-Antarctic forest soils of Tierra del Fuego (Argentina) as consequence of the prevailing soil processes. Geoderma 232-234, 130–140. doi:10.1016/j.geoderma.2014.04.040
  • Pontevedra-Pombal, X., Rey-Salgueiro, L., García-Falcón, M. S., Martínez-Carballo, E., Simal-Gándara, S., and Martíez-Cortizas, A. (2012). Pre-industrial Accumulation of Anthropogenic Polycyclic Aromatic Hydrocarbons Found in a Blanket Bog of the Iberian Peninsula. Environ. Res. 116, 36–43. doi:10.1016/j.envres.2012.04.015
  • Richardson, J. B., Aguirre, A. A., Buss, H. L., Toby O'Geen, A., Gu, X., Rempe, D. M., et al. (2018). Mercury Sourcing and Sequestration in Weathering Profiles at Six Critical Zone Observatories. Glob. Biogeochem. 32, 1542–1555. Cycles. doi:10.1029/2018GB005974
  • Richardson, J. B., Friedland, A. J., Engerbretson, T. R., Kaste, J. M., and Jackson, B. P. (2013). Spatial and Vertical Distribution of Mercury in Upland Forest Soils across the Northeastern United States. Environ. Pollut. 182, 127–134. doi:10.1016/j.envpol.2013.07.011
  • Richardson, J. B. (2022). Shale Weathering Profiles Show Hg Sequestration along a New York–Tennessee Transect. Environ. Geochem. Health 44, 3515–3526. doi:10.1007/s10653-021-01110-x
  • Roulet, M., Lucotte, M., Saint-Aubin, A., Tran, S., Rhéault, I., Farella, N., et al. (1998). The Geochemistry of Mercury in Central Amazonian Soils Developed on the Alter-Do-Chão Formation of the Lower Tapajós River Valley, Pará State, Brazil1The Present Investigation Is Part of an Ongoing Study, the CARUSO Project (IDRC-UFPa-UQAM), Initiated to Determine the Sources, Fate, and Health Effects of MeHg in the Lower Tapajós area.1. Sci. Total Environ. 223, 1–24. doi:10.1016/s0048-9697(98)00265-4
  • Schroeder, W. H., and Munthe, J. (1998). Atmospheric Mercury - an Overview. Atmos. Environ. 32, 809–822. doi:10.1016/S1352-2310(97)00293-8
  • Schuster, P. F., Schaefer, K. M., Aiken, G. R., Antweiler, R. C., Dewild, J. F., Gryziec, J. D., et al. (2018). Permafrost Stores a Globally Significant Amount of Mercury. Geophys. Res. Lett. 45, 1463–1471. doi:10.1002/2017GL075571
  • SECS-SLCS-IEC (2023). Diccionario Multilingüe de la Ciencia del Suelo, español, catalán, gallego y portugués, con equivalencias en francés e inglés. Available from: https://cit.iec.cat/DiccMCS/inici.html (Accessed February 27, 2023).
  • Skyllberg, U., Bloom, P. R., Qian, J., Lin, C., and Bleam, W. F. (2006). Complexation of Mercury(II) in Soil Organic Matter: EXAFS Evidence for Linear Two-Coordination with Reduced Sulfur Groups. Environ. Sci. Technol. 40, 4174–4180. doi:10.1021/es0600577
  • Smith-Downey, N. V., Sunderland, E. M., and Jacob, D. J. (2010). Anthropogenic Impacts on Global Storage and Emissions of Mercury from Terrestrial Soils: Insights from a New Global Model. J. Geophys. Res. G. Biogeosci. 115, G03008. doi:10.1029/2009JG001124
  • Spinola, D., Portes, R., Fedenko, J., Lybrand, R., Dere, A., Biles, F., et al. (2022). Lithological Controls on Soil Geochemistry and Clay Mineralogy across Spodosols in the Coastal Temperate Rainforest of Southeast Alaska. Geoderma 428, 116211. doi:10.1016/j.geoderma.2022.116211
  • Taboada Castro, M. T., Ramil Rego, P., and Díaz-Fierros, F. (1995). Formación de suelos policíclicos durante el Cuaternario reciente en el Monte Borrelho (N. de Portugal), 20. Cuadernos del Laboratorio Xeolóxico de Laxe, 27–36.
  • Tipping, E., Lofts, S., Hooper, H., Frey, B., Spurgeon, D., and Svendsen, C. (2010). Critical Limits for Hg(II) in Soils, Derived from Chronic Toxicity Data. Environ. Pollut. 158, 2465–2471. doi:10.1016/j.envpol.2010.03.027
  • Urrutia, M., Macías, M., and García-Rodeja, E. (1995). Evaluación del CuCl2 y del LaCl3 como extractantes de aluminio en suelos ácidos de Galicia. Nova Acta Cient. Compostelana 5, 173–182.
  • Wang, X., Luo, J., Yin, R., Yuan, W., Lin, C. J., Sommar, J., et al. (2017). Using Mercury Isotopes to Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environ. Sci. Technol. 51, 801–809. doi:10.1021/acs.est.6b03806
  • Xin, M., and Gustin, M. S. (2007). Gaseous Elemental Mercury Exchange with Low Mercury Containing Soils: Investigation of Controlling Factors. Appl. Geochem. 22, 1451–1466. doi:10.1016/j.apgeochem.2007.02.006
  • Zhou, J., Du, B., Shang, L., Wang, Z., Cui, H., Fan, X., et al. (2020). Mercury Fluxes, Budgets, and Pools in Forest Ecosystems of China: A Review. Crit. Rev. Environ. Sci. Technol. 50, 1411–1450. doi:10.1080/10643389.2019.1661176
  • Zhou, J., Wang, Z., Zhang, X., and Gao, Y. (2017). Mercury Concentrations and Pools in Four Adjacent Coniferous and Deciduous Upland Forests in Beijing, China. J. Geophys. Res. Biogeosci. 112, 1260–1274. doi:10.1002/2017JG003776