Introduction to Computed Tomography: Application to the Inspection of Material Extruded Tensile Testing Specimens

  1. Alonso, Marcos
  2. López, Eugenio
  3. Álvarez, David
  4. Carou, Diego
Libro:
Materials Forming, Machining and Tribology

ISSN: 2195-0911 2195-092X

ISBN: 9783031484674 9783031484681

Ano de publicación: 2024

Páxinas: 259-271

Tipo: Capítulo de libro

DOI: 10.1007/978-3-031-48468-1_12 GOOGLE SCHOLAR lock_openAcceso aberto editor

Resumo

Implementation of material extrusion in the industry must overcome several issues regarding the quality inherent in the printing process. The increasing use of additive manufacturing has contributed to the development of new materials and market growth. Fortunately, the increasing availability of industrial computed tomography equipment (CT) provides researchers with a valuable resource to improve material extrusion technology. The objective of this chapter is to show students how to take advantage of computed tomography technology to inspect material extruded parts. In particular, the goal is to analyze tensile testing specimens and compare the results with the ones expected due to the configuration of the printing/process.

Referencias bibliográficas

  • AENOR. (2012). UNE 116005. AENOR.
  • Birosz, M. T., Ledenyák, D., & Andó, M. (2022). Effect of FDM infill patterns on mechanical properties. Polymer Testing, 113, 107654.
  • Bond, L., Gray, N., Margetan, F., Utrata, D., & Anderson, I. (2014). NDE for adding value to materials from metal powder processing. In Proceedings of the 2014 World Congress on Powder Metallurgy and Particulate Materials (pp. 1944–1959), Orlando.
  • Cantatore, A., & Müller, P. (2011). Introduction to computed tomography. DTU Mechanical Engineering.
  • Cerda-Avila, S. N., Medellín-Castillo, H. I., & Lim, T. (2020). An experimental methodology to analyse the structural behaviour of FDM parts with variable process parameters. Rapid Prototyping Journal, 26(9), 1615–1625.
  • Chacón, J., Caminero, M., García-Plaza, E., & Núñez, P. (2017). Additive manufacturing of PLA structures using fused deposition modeling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124, 143–157.
  • Dickson, A. N., Barry, J. N., McDonnell, K. A., & Dowling, D. P. (2017). Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing, 16, 146–152.
  • du Plessis, A., Meincken, M., & Seifert, T. (2013). Quantitative determination of density and mass of polymeric materials using microfocus computed tomography. Journal of Non-destructive Evaluation, 413–417.
  • El-Katatny, I., Masood, S. H., & Morsi, Y. S. (2010). Error analysis of FDM fabricated medical replicas. Rapid Prototyping Journal, 16(1), 36–43.
  • Fontana, L., Minetola, P., Iuliano, L., Rifuggiato, S., Khandpur, M. S., & Stiuso, V. (2022). An investigation of the influence of 3D printing parameters on the tensile strength of PLA material. Materials Today: Proceedings, 57, 657–663.
  • Holzmond, O., & Li, X. (2017). In situ real time defect detection of 3D printed parts. Additive Manufacturing, 17, 135–142.
  • ISO/ASTM 52900 additive manufacturing—General principles—Terminology (2022).
  • Kalender, W. A. (2006). X-ray computed tomography. Physics in Medicine and Biology, 51(13), R29-43.
  • Khosravani, M. R., & Reinicke, T. (2020). On the use of X-ray computed tomography in assesment of 3D-printed components. Journal of Nondestructive Evaluation, 39, 1–17.
  • Kim, H., Lin, Y., & Tseng, T.-L. B. (2018). A review on quality control in additive manufacturing. Rapid Prototyping Journal, 24(3), 645–669.
  • Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639–649
  • Kruth, J. P., Bartscher, M., Carmignato, S., Schmitt, R., De Chiffre, L., & Weckenmann, A. (2011). Computed tomography for dimensional metrology. CIRP Annals, 60(2), 821–842.
  • Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21(5), 604–617.
  • Leite, M., Fernandes, J., Reis, L., Vaz, M., & Deus, A. (2018). Study of the influence of 3D printing parameters on the mechanical properties of PLA. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018). Nanyang Technological University.
  • Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Troster, T., Richard, H., & Maier, H. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. International Journal of Fatigue, 48, 300–307.
  • López, V. M., Carou, D., & Cruz, S. F. A. (2022). Feasibility study on the use of recycled materials for prototyping purposes: A comparative study based on the tensile strength. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 237(5), 801–811.
  • Losano, F., Marinsek, G., Merlo, A. M., & Ricci, M. (1999). Computed tomography in the automotive field. Development of a new engine head case study. In DGZfP Proceedings BB 67-CD, 65–73.
  • Mohanty, A., Nag, K. S., Bagal, D. K., Barua, A., Jeet, S., Mahapatra, S. S., & Cherkia, H. (2022). Parametric optimisation of parameters affecting dimension precision of FDM printed part using hybrid Taguchi-MARCOS-nature inspired heuristic optimisation technique. Materials Today: Proceedings, 50(5), 893–903.
  • Mou, Y. A., & Koc, M. (2019). Dimensional capability of selected 3DP technologies. Rapid Prototyping Journal, 25(5), 915–924.
  • Ng, F. L., Tran, T. Q., & Liu, T. (2022). A methodology to develop part acceptance criteria model using non-destructive inspection technique for FDM printed part. Materials Today: Proceedings, 70, 310–316.
  • Pérez, M., Medina-Sánchez, G., García-Collado, A., Gupta, M., & Carou, D. (2018). Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters. Materials, 11(8), 1382.
  • Petsiuk, A. L., & Pearce, J. M. (2020). Open source computer vision-based layer-wise 3D printing analysis. Additive Manufacturing, 36, 101473.
  • Phillips, C., Kortschot, M., & Azhari, F. (2022). Towards standardising the preparation of test specimens made with material extrusion: Review of current techniques for tensile testing XE “Tensile testing.” Additive Manufacturing, 58, 103050.
  • Prabhakar, M. M., Saravanan, A. K., Lenin, A. H., Ieno, I. J., Mayandi, K., & Ramalingam, P. S. (2021). A short review on 3D printing methods, process parameters and materials. Materials Today: Proceedings, 45(7), 6108–6114.
  • Rifuggiato, S., Minetola, P., Stiuso, V., Khandpur, M. S., Fontana, L., & Iuliano, L. (2022). An investigation of the influence of 3D printing defects on the tensile performance of ABS material. Materials Today: Proceedings, 57(2), 851–858.
  • Schmitt, M., Mehta, R. M., & Kim, I. Y. (2020). Additive manufacturing infill optimisation for automotive 3D-printed ABS components. Rapid Prototyping Journal, 26(1), 89–99.
  • Snyder, J., Stimpson, C., Thole, K., & Mongillo, D. (2015). Build direction effects on microchannel tolerance and surface roughness. Journal of Mechanical Design, 137(11), 111411.
  • Spierings, A., Schneider, N., & Eggenberger, R. (2011). Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping Journal, 17(5), 380–386.
  • Tao, Y., Kong, F., Li, Z., Zhang, J., Zhao, X., Yin, Q., Xing, D., & Li, P. (2021). A review on voids of 3D printed parts by fused filament fabrication. Journal of Materials Research and Technology, 15, 4860–4879.
  • Thompson, A., Maskery, I., & Leach, R. K. (2016). X-ray computed tomography for additive manufacturing: A review. Measurement Science and Technology, 27(7), 072001.
  • YXLON. (2018). YXLON FF20 CT.
  • Zhang, B., Nasereddin, J., McDonagh, T., von Zeppelin, D., Gleadall, A., Alqahtani, F., Bibb, R., Belton, P., & Qi, S. (2021). Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. International Journal of Pharmaceutics, 604, 120626.