On properties of the set of awards vectors for a claims problem

  1. Miguel Ángel Mirás Calvo 1
  2. Iago Núñez Lugilde 2
  3. Carmen Quinteiro Sandoming 3
  4. Estela Sánchez Rodríguez 2
  1. 1 Departamento de Matemáticas, RGEAF. Universidade de Vigo, Vigo, Spain
  2. 2 Departamento de Estatística e Investigación Operativa, CINBIO. Universidade de Vigo. Spain
  3. 3 Departamento de Matemáticas, Universidade de Vigo, Vigo, Spain
Revista:
Top

ISSN: 1863-8279 1134-5764

Ano de publicación: 2024

Volume: 32

Número: 1

Páxinas: 137-167

Tipo: Artigo

DOI: 10.1007/S11750-023-00661-9 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Top

Resumo

We study the geometric structure of a particular type of nonempty convex polytopes that are the intersection of an n-rectangle with a hyperplane x1 + ⋯ + xn = E, E > 0. This type of polytopes arise naturally when studying, for instance, the set of awards vectors for a claims problem, the core of the game associated with a bankruptcy problem, the core-cover set of a game, or the class of two-bound core games. We explore in detail the geometry of such a polytope and provide explicit expressions to compute its volume and its centroid. In particular, we describe a procedure to compute the average-of-awards rule for a claims problem directly from the parameters of the problem. We show that computing the average-of-awards rule is # P-complete.

Información de financiamento

Financiadores

Referencias bibliográficas

  • Aumann RJ, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the Talmud. J Econ Theory 36:195–213
  • Aziz H (2013) Computation of the random arrival rule for bankruptcy problems. Oper Res Lett 41:499–502
  • Curiel IJ, Maschler M, Tijs SH (1987) Bankruptcy games. Z Oper Res 31:A143–A159
  • Dietzenbacher B (2018) Bankruptcy games with nontransferable utility. Math Soc Sci 92:16–21
  • Driessen TSH (1986) k-convex n-person games and their cores. Z Oper Res 30:A49–A64
  • Estévez-Fernández A, Fiestras-Janeiro MG, Mosquera MA, Sánchez-Rodríguez E (2012) A bankruptcy approach to the core cover. Math Methods Oper Res 76:195–213
  • Gerard-Varet LA, Zamir S (1987) Remarks on the reasonable set of outcomes in a general coalition function form game. Int J Game Theory 16:123–143
  • Gong D, Dietzenbacher B, Peters H (2022) Two-bound core games and the nucleolus. Ann Oper Res. https://doi.org/10.1007/s10479-022-04949-0
  • González-Díaz J, Borm P, Hendrickx R, Quant M (2005) A geometric characterisation of the compromise value. Math Methods Oper Res 61:483–500
  • González-Díaz J, Mirás Calvo MA, Quinteiro Sandomingo C, Sánchez Rodríguez E (2015) Monotonicity of the core-center of the airport game. TOP 23(3):773–798
  • González-Díaz J, Mirás Calvo MA, Quinteiro Sandomingo C, Sánchez Rodríguez E (2016) Airport games: The core and its center. Math Soc Sci 82:105–115
  • González-Díaz J, Sánchez-Rodríguez E (2007) A natural selection from the core of a TU game: the corecenter. Int J Game Theory 36:27–46
  • González-Díaz J, Sánchez-Rodríguez E (2008) Cores of convex and strictly convex games. Games Econ Behav 62:100–105
  • Gopalan P, Klivans A, Meka R, Štefankovič D, Vempala S, Vigoda E (2011) An FPTAS for #knapsack and related counting problems. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pages 817–826
  • Gritzman P, Klee V (1994) On the complexity of some basic problems in computational convexity: volume and mixed volumes. In: Bisztriczky T, McMullen P, Schneider R, Weiss A (eds) Polytopes: abstract, convex and computational. Kluwer, Boston MA, pp 373–466
  • Lasserre JB (1983) An analytical expression and an algorithm for the volume of a convex polyhedron in ℝn. J Optim Theory Appl 39:363–377
  • Mirás Calvo MA, Núñez Lugilde I, Quinteiro Sandomingo C, Sánchez Rodríguez E (2023a) An algorithm to compute the average-of-awards rule for claims problems with an application to the allocation of CO2 emissions. Ann Oper Res. https://doi.org/10.1007/s10479-023-05214-8
  • Mirás Calvo MA, Núñez Lugilde I, Quinteiro Sandomingo C, Sánchez Rodríguez E (2023b) An operational toolbox for solving conficting claims problems. Decis Anal J 6:100160
  • Mirás Calvo MA, Quinteiro Sandomingo C, Sánchez Rodríguez E (2016) Monotonicity implications for the ranking of rules for airport problems. Int J Econ Theory 12:379–400
  • Mirás Calvo MA, Quinteiro Sandomingo C, Sánchez Rodríguez E (2020) The boundary of the core of a balanced game: face games. Int J Game Theory 49:579–599
  • Mirás Calvo MA, Quinteiro Sandomingo C, Sánchez Rodríguez E (2022) The average-of-awards rule for claims problems. Soc Choice Welfare 59:863–888
  • Muto S, Nakayama M, Potters J, Tijs S (1988) On big boss games. Econ Stud Quart 39:303–321
  • Núñez Lugilde I, Mirás Calvo MA, Quinteiro Sandomingo C, Sánchez Rodríguez E (2023) Claims Problems: analysis of Conficting Claims. R package version 0.2.1.
  • O’Neill B (1982) A problem of rights arbitration from the Talmud. Math Soc Sci 2:345–371
  • Pechersky S (2015) A note on external angles of the core of convex TU games, marginal worth vectors and the Weber set. Int J Game Theory 44:487–498
  • Potters J, Poos R, Tijs S, Muto S (1989) Clan games. Games Econom Behav 1:275–293
  • Thomson W (2019) How to divide when there isn’t enough. From Aristotle, the Talmud, and Maimonides to the axiomatics of resource allocation. Cambridge University Press, Cambridge
  • Tijs SH, Lipperts FAS (1982) The hypercube and the core cover of n-person cooperative games. Cahiers du Centre d’Études de Researche Opérationelle 24:27–37
  • Weber RJ (1988) Probabilistic values for games. In: Roth AE (ed) The Shapley value. Essays in honor of Lloyd S. Shapley. Cambridge University Press, Cambridge, pp 101–119