Effect of Phase-Change Materials on Laboratory-Made Insoles: Analysis of Environmental Conditions
- Arce, Elena 1
- Devesa-Rey, Rosa 3
- Suárez-García, Andrés 3
- González-Peña, David 2
- García-Fuente, Manuel 2
-
1
Universidade da Coruña
info
-
2
Universidad de Burgos
info
-
3
Universidade de Vigo
info
ISSN: 1996-1944
Any de publicació: 2022
Volum: 15
Número: 19
Pàgines: 1-16
Tipus: Article
Altres publicacions en: Materials
Resum
Thermal comfort is essential when wearing a postural-corrective garment. Discomfort of any kind may deter regular use and prolong user recovery time. The objective of this work is therefore to optimize a new compound that can alter the temperature of orthopedic insoles, thereby improving the thermal comfort for the user. Its novelty is a resin composite that contains a thermoregulatory Phase-Change Material (PCM). An experimental design was used to optimize the proportions of PCM, epoxy resin, and thickener in the composite and its effects. A Box–Behnken factor design was applied to each compound to establish the optimal proportions of all three substances. The dependent variables were the Shore A and D hardness tests and thermogravimetric heat-exchange measurements. As was foreseeable, the influence of the PCM on the thermal absorption levels of the compound was quantifiable and could be determined from the results of the factor design. Likewise, compound hardness was determined by resin type and resin-PCM interactions, so the quantity of PCM also had some influence on the mechanical properties of the composite. Both the durability and the flexibility of the final product complied with current standards for orthopedic insoles
Informació de finançament
Finançadors
-
Spanish Ministry of Science and Innovation under the I+D+i state program “Challenges Research Projects”
- RTI2018-098900-B-I00
Referències bibliogràfiques
- Yick, (2019), Int. J. Fash. Des. Technol. Educ., 12, pp. 325, 10.1080/17543266.2019.1629028
- Ribezzo, (2022), J. Energy Storage, 53, pp. 105140, 10.1016/j.est.2022.105140
- Delgado, J., Martinho, J.C., Vaz Sá, A., Guimarães, A.S., and Abrantes, V. (2019). Thermal Energy Storage with Phase Change Materials, Springer Briefs in Applied Sciences and Technology. Springer.
- Gilart, (2012), Sol. Energy Mater. Sol. Cells, 107, pp. 205, 10.1016/j.solmat.2012.06.014
- Gao, (2022), Colloids Surf. Phys. Eng. Asp., 648, pp. 129249, 10.1016/j.colsurfa.2022.129249
- Larciprete, (2020), MRS Adv., 5, pp. 1023, 10.1557/adv.2020.106
- Raza, (2022), Ind. Text., 73, pp. 3, 10.35530/IT.073.01.202143
- West, (2019), Appl Erg., 78, pp. 1, 10.1016/j.apergo.2019.01.010
- Li, P., Yick, K., Yip, J., and Ng, S. (2022). Influence of Upper Footwear Material Properties on Foot Skin Temperature, Humidity and Perceived Comfort of Older Individuals. Int. J. Environ. Res. Public Health, 19.
- Nemati, H., and Naemi, R. (2022). An Analytical Model to Predict Foot Sole Temperature: Implications to Insole Design for Physical Activity in Sport and Exercise. Appl. Sci., 12.
- Ning, (2022), Appl. Erg., 104, pp. 103803, 10.1016/j.apergo.2022.103803
- Ferraz, J., Silva, S., Fernandes, H., Bogas, S., Vale, B., Gonçalves, J., Matos, C., Pedrosa, R., and Leite, T. (2021). Active Thermal Regulation Systems for Footwear: Development of New Innovative Technologies, Key Engineering Materials, Trans Tech Publications Ltd.
- Greszta, A., Bartkowiak, G., Dąbrowska, A., Gliścińska, E., Machnowski, W., and Kozikowski, P. (2022). Multilayer Nonwoven Inserts with Aerogel/PCMs for the Improvement of Thermophysiological Comfort in Protective Clothing against the Cold. Materials, 15.
- Dai, (2018), ACS Sustain. Chem. Eng., 6, pp. 7589, 10.1021/acssuschemeng.8b00439
- Oldring, P.K. (2003). Coatings, colorants, and paints. Encyclopedia of Physical Science and Technology, Academic Press.
- Chikhi, (2002), Eur. Polym. J., 38, pp. 251, 10.1016/S0014-3057(01)00194-X
- Kojnoková, T., Nový, F., and Markovičová, L. (2022). The Study of Chemical and Thermal Influences of the Environment on the Degradation of Mechanical Properties of Carbon Composite with Epoxy Resin. Polymers, 14.
- Yang, (2020), J. Appl. Polym. Sci., 137, pp. 48596, 10.1002/app.48596
- Kenny, (2019), Gait Posture, 71, pp. 79, 10.1016/j.gaitpost.2019.04.017
- Martínez-Nova, A., Jiménez-Cano, V.M., Caracuel-López, J.M., Gómez-Martín, B., Escamilla-Martínez, E., and Sánchez-Rodríguez, R. (2021). Effectiveness of a central discharge element sock for plantar temperature reduction and improving comfort. Int. J. Environ. Res. Public Health, 18.
- Bezerra, (2008), Talanta, 76, pp. 965, 10.1016/j.talanta.2008.05.019
- (2022, July 21). Phase Change Material. Available online: https://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt.
- Box, (1960), Ann. Math. Stat., 4, pp. 838, 10.1214/aoms/1177705661
- Ferreira, (2007), Anal. Chim. Acta, 597, pp. 179, 10.1016/j.aca.2007.07.011
- Isherwood, (2021), Footwear Sci., 13, pp. 221, 10.1080/19424280.2021.1913243
- Shim, D.W., Sung, S., Chung, W., Kang, K., Park, S., Lee, J.W., and Chae, D.S. (2021). Superior pedal function recovery of newly designed three spike insole over total contact insole in refractory plantar fasciitis: A randomized, double-blinded, non-inferiority study. PLoS ONE, 16.
- Álvarez Feijoo, M.Á., Arce Fariña, M.E., Suárez-García, A., González-Peña, D., and Díez-Mediavilla, M. (2019). Compounds with epoxy resins and phase change materials for storage in solar applications. Materials, 12.
- Arce, E., Agrawal, R., Suárez, A., Febrero, L., and Luhrs, C.C. (2020). Modeling of energy demand and savings associated with the use of epoxy-phase change material formulations. Materials, 13.
- Cheng, (2022), J. Energy Storage, 47, pp. 103581, 10.1016/j.est.2021.103581
- Borreguero, (2013), Text. Res. J., 83, pp. 1754, 10.1177/0040517513481872
- Bonadies, (2015), Ind. Eng. Chem. Res., 54, pp. 9342, 10.1021/acs.iecr.5b02187
- Miao, T., and Li, Y. (2022). Modelling the thermal microenvironment of footwear subjected to forced ventilation. Ergonomics.
- Miao, (2021), Sci. Rep., 11, pp. 20356, 10.1038/s41598-021-99865-x
- Ismail, (2022), J. Energy Storage, 53, pp. 105202, 10.1016/j.est.2022.105202
- Wu, (2022), ACS Sustain. Chem. Eng., 10, pp. 7873, 10.1021/acssuschemeng.2c00189