Generación de movimientos oceánicos para pruebas sistemáticas con Plataforma Stewart

  1. Silva Muñiz, Diego 1
  2. Garrido Campos, Julio 1
  3. Riveiro Fernández, Enrique 1
  4. Rivera-Andrade, Josué Roberto 1
  1. 1 Grupo en Ingeniería Eficiente y Digital, Universidad de Vigo
Journal:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Year of publication: 2024

Issue: 45

Type: Article

DOI: 10.17979/JA-CEA.2024.45.10785 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

Abstract

This research uses a Stewart platform developed by the research group to emulate oceanic conditions for systematic testing.Specifically, ocean motions are generated based on the JONSWAP wave energy spectrum and the simple harmonic model of thesea surface derived from the spectrum, as a superposition of regular waves. Thus, an irregular wave is obtained. The contribution also includes the implementation using only the resources available in an industrial controller, without using external software.The results phase shows two generated movements and compares them with those obtained using an MRU sensor and the direct kinematics calculated in the industrial controller itself. As future work, it is proposed to use a two-dimensional spectrum model.

Bibliographic References

  • Arconada, V. S., García-Barruetabeña, J., Haas, R., 2023. Validation of a ride comfort simulation strategy on an electric Stewart Platform for real road driving applications. Journal of Low Frequency Noise, Vibration and Active Control 42 (1), 368–391. DOI: 10.1177/14613484221122109 DOI: https://doi.org/10.1177/14613484221122109
  • Cai, Y., Zheng, S., Liu, W., Qu, Z., Zhu, J., Han, J., 2021. Sliding-mode control of ship-mounted Stewart platforms for wave compensation using velocity feedforward. Ocean Engineering 236, 109477. DOI: 10.1016/j.oceaneng.2021.109477 DOI: https://doi.org/10.1016/j.oceaneng.2021.109477
  • Chakrabarti, S. K., 2005. Ocean Environment. In: Chakrabarti, S. K. (Ed.), Handbook of Offshore Engineering. Elsevier, Illinois, USA, Ch. 3, pp. 79– 131. DOI: https://doi.org/10.1016/B978-008044381-2/50006-0
  • Chen, W., Du, C., Tong, J., Liu, F., Men, Y., 2024. Dynamics Solution and Characteristics Analysis of a 6-SPS Passive Vibration Isolator Based on MS-DT-TMM. Journal of Vibration Engineering & Technologies 12 (3), 4463–4482. DOI: 10.1007/s42417-023-01131-z DOI: https://doi.org/10.1007/s42417-023-01131-z
  • Chuan, W., Huafeng, D., Lei, H., 2018. A dynamic ocean wave simulator based on six-degrees of freedom parallel platform. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (20), 3722–3732. DOI: 10.1177/0954406217739647 DOI: https://doi.org/10.1177/0954406217739647
  • Det Norske Veritas, 2011. Modelling and analysis of marine operations. Prácticas Recomendadas DNV-RP-H103, Det Norske Veritas. URL: https://home.hvl.no/ansatte/gste/ftp/MarinLab_files/Litteratur/DNV/rp-h103_2011-04.pdf
  • Han, B., Chen, N., 2021. Simulation of Ship Trajectory in Waves Based on STAR-CCM+. Bulletin of Science and Practice 7 (4), 267–275. DOI: 10.33619/2414-2948/65/30 DOI: https://doi.org/10.33619/2414-2948/65/30
  • Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, A., Hasselmann, D., Kruseman, P., Meerburg, A., M¨uller, P., Olbers, D., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). Erg¨anzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A Nr. 12.
  • Longuet-Higgins, M., 1952. On the Statistical Distribution of the Heights of Sea Waves. Journal of Marine Research 11 (3).
  • Madsen, A. L., Kristensen, SG., 2012. Design of Stewart Platform for Wave Compensation. Aalborg University, Aalborg, Denmark. URL: https://vbn.aau.dk/ws/files/63502229/EMSD415a_Final.pdf
  • OMRON Corporation, 2019a. NJ/NX-Series Instructions Reference Manual. Kyoto, Japan. URL: https://assets.omron.eu/downloads/manual/en/v4/w502_nx_nj-series_instructions_reference_manual_en.pdf
  • OMRON Corporation, 2019b. NJ/NX-Series Motion Control Instructions Reference Manual. Kyoto, Japan. URL: https://assets.omron.eu/downloads/manual/en/v2/w508_nx_nj-series_motion_control_instructions_reference_manual_en.pdf
  • Ship Motion Control, 2024. MRU IMU-008 Roll/Pitch/Heave. URL: https://www.store.shipmotion.eu/smc-imu-008-roll-pitch-heave-surface-mru
  • Sun, L., Yang, X.-Q., Bu, S.-X., Zheng, W.-T., Ma, Y.-X., Jiao, Z.-L., 2023. Analysis of FPSO Motion Response under Different Wave Spectra. Journal of Marine Science and Engineering 11 (7), 1467. DOI: 10.3390/jmse11071467 DOI: https://doi.org/10.3390/jmse11071467
  • Tabeshpour, M. R., Belvasi, N., 2023. Ocean waves time-series generation: Minimum required artificial wave time-series for wave energy converter analysis. Journal of Marine Engineering & Technology 22 (6), 273–283. DOI: 10.1080/20464177.2023.2197280 DOI: https://doi.org/10.1080/20464177.2023.2197280
  • Walica, D., Noskieviˇc, P., 2024. Multibody Simulation Model as Part of Digital Twin Architecture: Stewart Platform Example. IEEE Access 12, 3700–3717. DOI: 10.1109/ACCESS.2023.3349247 DOI: https://doi.org/10.1109/ACCESS.2023.3349247
  • Wei, M.-Y., 2021. Design and Implementation of Inverse Kinematics and Motion Monitoring System for 6DoF Platform. Applied Sciences 11 (19), 9330. DOI: 10.3390/app11199330 DOI: https://doi.org/10.3390/app11199330
  • Wei, Y., Wang, A., Han, H., 2019. Ocean wave active compensation analysis of inverse kinematics for hybrid boarding system based on fuzzy algorithm. Ocean Engineering 182, 577–583. DOI: 10.1016/j.oceaneng.2019.03.059 DOI: https://doi.org/10.1016/j.oceaneng.2019.03.059
  • Xu, Y., Liang, S., Sun, Z., Xue, Q., 2022. A new spectral parameter to predict dominant wave breaking based on the JONSWAP spectrum. Ocean Engineering 243, 110332. DOI: 10.1016/j.oceaneng.2021.110332 DOI: https://doi.org/10.1016/j.oceaneng.2021.110332
  • Yazid, E., Mirdanie, M., Ardiansyah, R. A., Rahmat, Ristiana, R., Sulaeman, Y., 2021. Inverse Kinematics Model for a Ship Mounted Two-DoF Manipulator System. In: 2021 IEEE Ocean Engineering Technology and Innovation Conference (OETIC). IEEE, Jakarta, Indonesia, pp. 50–56. DOI: 10.1109/OETIC53770.2021.9733723 DOI: https://doi.org/10.1109/OETIC53770.2021.9733723
  • Zhang, Q., Wang, X.-y., Zhang, Z.-z., Zhou, F.-n., Hu, X., 2022. Wave Heave Compensation Based on An Optimized Backstepping Control Method. China Ocean Engineering 36 (6), 959–968. DOI: 10.1007/s13344-022-0084-x DOI: https://doi.org/10.1007/s13344-022-0084-x