Integración de IMU y GNSS. Estimación del estado del firme
- Díaz-Cacho Medina, Miguel 1
- Chaves, André 2
- García Rivera, Matías 1
-
1
Universidade de Vigo
info
-
2
Instituto Politécnico de Bragança
info
- Cruz Martín, Ana María (coord.)
- Arévalo Espejo, V. (coord.)
- Fernández Lozano, Juan Jesús (coord.)
ISSN: 3045-4093
Any de publicació: 2024
Número: 45
Tipus: Article
Resum
This work presents a sensor integration system provided by a mobile device for vehicular environments. The integrated sensors are an IMU and a GNSS receiver, which allow the creation of a road surface condition estimation system based on the variation of the vertical acceleration detected by the IMU and associated with geodetic coordinates. To provide the technical system with a theoretical framework, specific roughness units are defined based on the samples of the measured acceleration and inspired by traditional surface roughness measurement techniques. The system uses a traditional ITS topology, where the mobile device is the OBU with the capacity to transmit data to the C-ITS server in the cloud to be processed and determine the resulting parameters. Tests of the system were carried out in a real road environment with satisfactory results, where differences in the types of road surface and indentations in the road were detected.
Referències bibliogràfiques
- Almazán, J., Bergasa, L. M., Yebes, J. J., Barea, R., Arroyo, R., June 2013. Full auto-calibration of a smartphone on board a vehicle using imu and gps embedded sensors. In: 2013 IEEE Intelligent Vehicles Symposium (IV). pp. 1374–1380. DOI: 10.1109/IVS.2013.6629658 DOI: https://doi.org/10.1109/IVS.2013.6629658
- Barbieri, D. M., Lou, B., 2024. Instrumentation and testing for road condition monitoring – a state-of-the-art review. NDT & E International 146, 103161. DOI: 10.1016/j.ndteint.2024.103161 DOI: https://doi.org/10.1016/j.ndteint.2024.103161
- Deputacion de Ourense, 2017. Eiel xeoportal. URL: https://eiel.depourense.es/
- El-Wakeel, A. S., Li, J., Noureldin, A., Hassanein, H. S., Zorba, N., Dec 2018. Towards a practical crowdsensing system for road surface conditions monitoring. IEEE Internet of Things Journal 5 (6), 4672–4685. DOI: 10.1109/JIOT.2018.2807408 DOI: https://doi.org/10.1109/JIOT.2018.2807408
- Jiménez, A. R., Seco, F., Torres-Sospedra, J., 2019. Tools for smartphone multi-sensor data registration and gt mapping for positioning applications. In: 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN). pp. 1–8. DOI: 10.1109/IPIN.2019.8911784 DOI: https://doi.org/10.1109/IPIN.2019.8911784
- Nelson, L. S., 1988. Control charts: rational subgroups and effective applications. Journal of Quality Technology 20 (1), 73–75. DOI: https://doi.org/10.1080/00224065.1988.11979085
- Sayers, M., Gillespie, T., Paterson, W., 1986. Guidelines for Conducting and Calibrating Road Roughness Measurements. No. v. 23-46 in Guidelines for Conducting and Calibrating Road Roughness Measurements. World Bank.
- Vieira, E., Almeida, J., Ferreira, J., Dias, T., Vieira Silva, A., Moura, L., 2023. A roadside and cloud-based vehicular communications framework for the provision of c-its services. Information 14 (3). DOI: 10.3390/info14030153 DOI: https://doi.org/10.3390/info14030153
- Wheeler, D. J., 1995. Advanced topics in statistical process control. Vol. 470. SPC press Knoxville, TN.
- Yu, Q., Fang, Y., Wix, R., 2022. Pavement roughness index estimation and anomaly detection using smartphones. Automation in Construction 141, 104409. DOI: 10.1016/j.autcon.2022.104409 DOI: https://doi.org/10.1016/j.autcon.2022.104409
- Zhao, E., Walker, P. D., Ong, A., Al-Widyan, F., 2021. Measuring road conditions with an imu and gps monitoring system. In: Oberst, S., Halkon, B., Ji, J., Brown, T. (Eds.), Vibration Engineering for a Sustainable Future. Springer International Publishing, Cham, pp. 95–101. DOI: https://doi.org/10.1007/978-3-030-47618-2_12