Locking of sub micron 3D printed weld morphologies via interfacial stereocomplex crystallization in Fast Scanning Chip calorimetry.

  1. Bertella, Francesca 1
  2. Harings, Jules 2
  3. Hermida Merino, Daniel 3
  4. Kneepkens, Roy 4
  5. Rosenthal, Martin 5
  1. 1 Maastricht University,Department of Bio-based Materials,Maastricht Science Programme,P.O. Box 616,6200MD MAASTRICHT,6200MD,MAASTRICHT,NETHERLANDS
  2. 2 Maastricht University,Faculty of Humanity and Sciences,Kapoenstraat 2,PO Box 616,6200MD MAASTRICHT,6200MD,MAASTRICHT,NETHERLANDS
  3. 3 Universidade de Vigo,Departamento de Física Aplicada,Campus Lagoas-Marcosende,Fac de Ciencias,E36310 VIGO,E36310,VIGO,SPAIN
  4. 4 Maastricht University,BioBased Materials,Brightlands Chemelot Campus Urmonderbaan 22,6167 RD GELEEN,NETHERLANDS,6167 RD,GELEEN,NETHERLANDS
  5. 5 DUBBLE CRG (BEL),71 avenue des Martyrs,CS 40220,38043 GRENOBLE Cedex 09,38043,GRENOBLE,FRANCE

Editor: European Synchrotron Radiation Facility

Ano de publicación: 2027

Tipo: Dataset

Resumo

Incomplete macromolecular mixing and (re-)entangling across weld interfaces cause inferior weld mechanics transverse to the print direction. As solution we have proposed interfacial stereocomplex (SC) crystallization, but the increased mechanical activation energy of SC-PLA entails mechanical embrittlement. We synthesized new copolymers that upon melt crystallization give enhanced control of ductility via phase separation and interfacial SC crystallization. By combining a nanofocused beam and fast scanning chip calorimeter giving submicron spatial and msec temporal resolution, we aim to answer the question how molecular and blend composition, phase separation in the melt, and cold crystallization during heating in pre-recorded printing profiles direct morphology evolution and later mechanical performance.