Publications by the researcher in collaboration with JOSE RAMON FERNANDEZ GARCIA (39)

2024

  1. FULLY DISCRETE APPROXIMATIONS AND AN A PRIORI ERROR ANALYSIS OF A TWO–TEMPERATURE THERMO–ELASTIC MODEL WITH MICROTEMPERATURES

    International Journal of Applied Mathematics and Computer Science, Vol. 34, Núm. 1, pp. 93-103

  2. Nonlocal damage evaluation of a sigmoid-based damage model for fibrous biological soft tissues

    Biomechanics and Modeling in Mechanobiology, Vol. 23, Núm. 2, pp. 655-674

2023

  1. A Fully Discrete Approximation of a New Two-Temperature Thermoelastic Model

    Numerical Functional Analysis and Optimization, Vol. 44, Núm. 10, pp. 1044-1059

  2. An a priori error analysis of a type III thermoelastic problem with two porosities

    Numerical Methods for Partial Differential Equations, Vol. 39, Núm. 2, pp. 1067-1084

  3. Decay for strain gradient porous elastic waves

    Zeitschrift fur Angewandte Mathematik und Physik, Vol. 74, Núm. 1

  4. Finite Element Error Analysis of a Viscoelastic Timoshenko Beam with Thermodiffusion Effects

    Mathematics, Vol. 11, Núm. 13

  5. Numerical analysis of a caginalp phase-field system in type iii heat conduction

    Discrete and Continuous Dynamical Systems - Series S, Vol. 16, Núm. 9, pp. 2230-2240

2022

  1. An a priori error analysis of a porous strain gradient model

    ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 102, Núm. 1

  2. CMMSE: numerical analysis of a chemical targeting model

    Journal of Mathematical Chemistry, Vol. 60, Núm. 10, pp. 2125-2138

  3. ON THE TIME DECAY FOR THE MGT-TYPE POROSITY PROBLEMS

    Discrete and Continuous Dynamical Systems - Series S, Vol. 15, Núm. 8, pp. 1941-1955

  4. On the fully discrete approximations of the MGT two-temperatures thermoelastic problem

    Archives of Mechanics, Vol. 74, Núm. 5, pp. 391-407

  5. Time decay for porosity problems

    Mathematical Methods in the Applied Sciences, Vol. 45, Núm. 8, pp. 4567-4577

2021

  1. An a priori error analysis of a strain gradient model using c0 interior penalty methods

    Journal of Applied Analysis and Computation, Vol. 11, Núm. 5, pp. 2303-2312

  2. Quasistatic porous-thermoelastic problems: An a priori error analysis

    Mathematics, Vol. 9, Núm. 12

  3. Spatial extension of a bone remodeling dynamics model and its finite element analysis

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 37, Núm. 3

2020

  1. An a priori error analysis of a Lord–Shulman poro-thermoelastic problem with microtemperatures

    Acta Mechanica, Vol. 231, Núm. 10, pp. 4055-4076

  2. Analysis of a bone remodeling model with myeloma disease arising in cellular dynamics

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 36, Núm. 6

  3. CMMSE 2017–a numerical method based on genetic algorithms for the characterization of viscoelastic materials

    International Journal of Computer Mathematics, Vol. 97, Núm. 1-2, pp. 294-311

  4. Characterization of hyperelastic and damage behavior of tendons

    Computer Methods in Biomechanics and Biomedical Engineering, Vol. 23, Núm. 6, pp. 213-223

  5. Finite element validation of an energy attenuator for the design of a formula student car

    Mathematics, Vol. 8, Núm. 3