Arithmetical Difficulties and Low Arithmetic AchievementAnalysis of the Underlying Cognitive Functioning

  1. Valentín Iglesias-Sarmiento 1
  2. Manuel Deaño
  1. 1 Universidade de Vigo (Spain)
Zeitschrift:
The Spanish Journal of Psychology

ISSN: 1138-7416

Datum der Publikation: 2016

Ausgabe: 19

Art: Artikel

DOI: 10.1017/SJP.2016.40 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: The Spanish Journal of Psychology

Ziele für nachhaltige Entwicklung

Zusammenfassung

This study analyzed the cognitive functioning underlying arithmetical difficulties and explored the predictors of arithmetic achievement in the last three grades of Spanish Primary Education. For this purpose, a group of 165 students was selected and divided into three groups of arithmetic competence: Mathematical Learning Disability group (MLD, n = 27), Low Achieving group (LA, n = 39), and Typical Achieving group (TA, n = 99). Students were assessed in domain-general abilities (working memory and PASS cognitive processes), and numerical competence (counting and number processing) during the last two months of the academic year. Performance of children from the MLD group was significantly poorer than that of the LA group in writing dictated Arabic numbers (d = –0.88), reading written verbal numbers (d = –0.84), transcoding written verbal numbers to Arabic numbers (–0.75) and comprehension of place value (d = –0.69), as well as in simultaneous (d = –0.62) and successive (d = –0.59) coding. In addition, a specific developmental sequence was observed in both groups, the implications of which are discussed. Hierarchical regression analysis revealed simultaneous coding (β = .47, t(155) = 6.18, p < .001) and number processing (β = .23, t(155) = 3.07, p < .01) as specific predictors of arithmetical performance.

Bibliographische Referenzen

  • Baddeley A. D., & Hitch G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–89). San Diego, CA: Academic Press.
  • Best J. R., Miller P. H., & Naglieri J. A. (2011). Relations between executive function and academical achievement from ages 5 to 17 in a large, representative national simple. Learning and Individual Differences, 21, 327–336. http://dx. doi.org/10.1016/j.lindif.2011.01.007
  • Barbaresi W. J., Katusic S. K., Colligan R. C., Weaver A. L., & Jacobsen S. J. (2005). Math learning disorder: Incidence in a population based birth cohort, 1976–1982, Rochester, Minn. Ambulatory Pediatrics, 5, 281–289. http://dx.doi. org/10.1367/A04-209R.1
  • Butterworth B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18. http://dx.doi.org/10.1111/j.1469-7610.2004.00374.x
  • Cai D., Li Q. W., & Deng C. P. (2013). Cognitive processing characteristics of 6th to 8th grade Chinese students with mathematics learning disability: Relationships among working memory, PASS processes, and processing speed. Learning and Individual Differences, 27, 120–127. http://dx. doi.org/10.1016/j.lindif.2013.07.008
  • Das J. P., Naglieri J. A., & Kirby J. R. (1994). Assessment of cognitive processes: The PASS theory of intelligence. Boston, MA: Allyn & Bacon.
  • Davidson M. C., Amso D., Anderson L. C., & Diamond A. (2006). Development of cognitive control and executive functions from 4–13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44, 2037–2078. http://dx.doi.org/10.1016/j. neuropsychologia.2006.02.006
  • Deaño M. (2000). Cómo prevenir las dificultades de cálculo. [How to prevent calculation disabilities] Málaga, Spain: Aljibe.
  • Deaño M., Alfonso S., & Fernández M. J. (2006). El D.N: CAS como sistema de evaluación cognitiva para el aprendizaje [The D.N: CAS as a cognitive assessment system of learning.]. In M. Deaño (Ed.), Formación del profesorado para atender a las necesidades específicas de apoyo educativo. XXXII Reunión Científica Anual [Teachers training to meet the specific needs of educational support. XXXII Anual scientific meeting]. (pp. 159–182). Ourense, Spain: AEDES.
  • De Smedt B., Verschaffel L., & Ghesquière P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469–479. http://dx.doi.org/10.1016/j.jecp.2009.01.010
  • Fuchs L. S., Fuchs D., Compton D. L., Powell S. R., Seethaler P. M., Capizzi A. M., … Fletcher J. M. (2006). The cognitive correlates of third-grade skills in arithmetic, algorithmic computation and arithmetic word problems. Journal of Educational Psychology, 98(1), 29–43. http://dx. doi.org/10.1037/0022-0663.98.1.29
  • Fuchs L. S., Geary D. C., Compton D. L., Fuchs D., Hamlett C. L., & Bryant J. D. (2010). The contributions of numerosity and domain-general abilities to school readiness. Child Development, 81, 1520–1533. http://dx. doi.org/10.1111/j.1467-8624.2010.01489.x
  • Garofalo J. (1986). Simultaneous synthesis, regulation, and arithmetical performance. Journal of Psychoeducational Assessment, 4, 229–238. http://dx.doi.org/10.1177/ 073428298600400306
  • Gathercole S. E., & Alloway T. P. (2008). Working memory and learning. A practical guide for teachers. London, UK: Sage Publications.
  • Geary D. C. (2011). Cognitive predictors of individual differences in achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47, 1539–1552. http://dx.doi.org/10.1037/a0025510
  • Geary D. C., Bailey D. H., Littlefield A., Wood P., Hoard M. K., & Nugent L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24, 411–429. http://dx.doi.org/10.1016/j.cogdev.2009.10.001
  • Geary D. C., Hoard M. K., Byrd-Craven J., & DeSoto M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121–151. http://dx.doi. org/10.1016/j.jecp.2004.03.002
  • Geary D. C., Hoard M. K., Byrd-Craven J., Nugent L., & Numtee C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343–1359. http://dx.doi.org/10.1111/j.1467-8624.2007.01069.x
  • Holloway I. D., & Ansari D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29. http://dx.doi.org/10.1016/j.jecp.2008.04.001
  • Iglesias-Sarmiento V., & Deaño M. (2011). Cognitive processing and mathematical achievement: A study with schoolchildren between 4th and 6th grade of primary education. Journal of Learning Disabilities, 44, 570–583. http://dx.doi.org/10.1177/0022219411400749
  • Imbo I., & Vandierendonck A. (2007). The role of phonological and executive working memory resources in simple arithmetic strategies. European Journal of Cognitive Psychology, 19, 910–933. http://dx.doi.org/10.1080/ 09541440601051571
  • Luria A. R. (1966). Human brain and psychological processes. New York, NY: Harper & Row.
  • Kroesbergen E. H., van Luit J. E. H., & Naglieri J. A. (2003). Mathematics learning difficulties and PASS cognitive processes. Journal of Learning Disabilities, 36, 574–582. http://dx.doi.org/10.1177/00222194030360060801
  • Kroesbergen E. H., van Luit J. E. H., Naglieri J. A., Taddei S., & Franchi E. (2010). PASS processes and early mathematics skills in Dutch and Italian kindergartners. Journal of Psychoeducational Assessment, 28, 585–593. http://dx.doi.org/10.1177/0734282909356054
  • Mazzocco M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In D. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children. The nature and origins of mathematical learning difficulties and disabilities (pp. 29–47). Baltimore, MD: Paul H. Brookes.
  • McKenzie B., Bull R., & Gray C. (2003). The effects of phonological and visual-spatial interference on children’s arithmetical performance. Educational and Child Psychology, 20, 93–107.
  • McLean J. F., & Hitch G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of experimental Child Psychology, 67, 345–357. http://dx.doi.org/10.1006/jecp.1999.2516
  • Meyer M. L., Salimpoor V. N., Wu S. S., Geary D. C., & Menon V. (2010). Differential contribution of specific working memory components to mathematical skills in 2nd and 3rd graders. Learning and Individual Differences, 20, 101–109. http://dx.doi.org/10.1016/j.lindif.2009. 08.004
  • Miyake A., Friedman N., Emerson M. J., Witzki A. H., Howerter A., & Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. http://dx.doi.org/10.1006/ cogp.1999.0734
  • Naglieri J. A., & Das J. P. (1997). Cognitive assessment system. Itasca, IL: Riverside Publishing.
  • Naglieri J. A., & Das J. P. (2005). The PASS theory. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment (pp. 120−135. 2nd Ed.). New York, NY: Guilford.
  • Naglieri J. A., Rojahn J., & Matto H. C. (2007). Hispanic and non-Hispanic children’s performance on PASS cognitive processes and achievement. Intelligence, 35, 568–579. http://dx.doi.org/10.1016/j.intell.2006.11.001
  • OECD (2013). Programme for International Student Assessment (PISA). Volume 2: Data. Paris, France: Author.
  • Passolungui M. C., & Lanfranchi S. (2012). Domainspecific and domain-general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82(1), 42–63. http://dx.doi.org/10.1111/j.2044-8279. 2011.02039.x
  • Passolungui M. C., & Mammarella I. C. (2012). Selective spatial working memory impairment in a group of children with mathematics learning disabilities and poor problem-solving skills. Journal of Learning Disabilities, 45, 341–350. http://dx.doi.org/10.1177/0022219411400746
  • Passolunghi M. C., Vercelloni B., & Schadee H. (2007). The precursors of mathematics learning: Working memory, phonological ability, and numerical competence. Cognitive Development, 22, 165–184. http://dx.doi. org/10.1016/j.cogdev.2006.09.001
  • Raghubar K. P., Barnes M. A., & Hecht S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122. http://dx.doi. org/10.1016/j.lindif.2009.10.005
  • Swanson H. L., Jerman O., & Zheng X. (2008). Growth in working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 100, 343–379. http:// dx.doi.org/10.1037/0022-0663.100.2.343
  • Temple C. M., & Sherwood S. (2002). Representation and retrieval of arithmetical facts: Developmental difficulties. Quarterly Journal of Experimental Psychology, 55(1), 733–752. http://dx.doi.org/10.1080/02724980143000550
  • Trbovich P. L., & LeFevre J. (2003). Phonological and visual working memory in mental addition. Memory & Cognition, 31, 738–745. http://dx.doi.org/10.3758/ BF03196112
  • Vanbinst K., Ghesquière P., & De Smedt B. (2014). Arithmetic strategy development and its domain-specific and domain-general cognitive correlates: A longitudinal study in children with persistent mathematical learning difficulties. Research in Developmental Disabilities, 35, 3001–3013. http://dx.doi.org/10.1016/j.ridd.2014.06.023
  • Van der Sluis S., van der Leij A., & de Jong P. F. (2005). Working memory in Dutch children with readingand arithmetic-related LD. Journal of Learning Disabilities, 38, 207–221. http://dx.doi.org/10.1177/00222194050380030301
  • Von Aster M. G., & Shalev R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868–873. http://dx.doi.org/10.1111/ j.1469-8749.2007.00868.x
  • Watters J. J., & English L. D. (1995). Children’s application of simultaneous and successive processing in inductive and deductive reasoning problems: Implications for developing scientific reasoning. Journal of Research in Science Teaching, 32, 699–714. http://dx.doi.org/ 10.1002/tea.3660320705
  • Warrick P. D. (1989). Investigation of the PASS model (planning, attention, simultaneous, successive) of cognitive processing and mathematics achievement. (Unpublished doctoral dissertation). Ohio State University, Columbus.
  • Wechsler D. (1974). Manual for the Wechsler Intelligence Scale for Children (Revised). New York, NY: Psychological Corporation.
  • Wechsler D. (1993). Escala de Inteligencia de Wechsler para Niños-Revisada (WISC-R) [Manual for the Wechsler Intelligence Scale for Children]. Madrid, Spain: TEA.
  • Zorzi M., Priftis K., & Umiltà C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417, 138–139. http://dx.doi.org/10.1038/417138a