Cd2+, Cu2+, and Pb2+ sorption, desorption and migration in Fluvisols

  1. Arenas-Lago, Daniel
  2. Rodríguez-Seijo, Andrés
  3. Cerqueira Cancelo, Beatriz
  4. Andrade Couce, María Luisa
  5. Alonso Vega, Flora
Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Ano de publicación: 2015

Volume: 5

Número: 3

Páxinas: 276-295

Tipo: Artigo

DOI: 10.3232/SJSS.2015.V5.N3.07 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Spanish Journal of Soil Science: SJSS

Resumo

O objetivo deste trabalho foi avaliar e comparar a capacidade de sorção e dessorção, individual e bimetálica e a histerese de Cd2+, Cu2+ y Pb2+ em dois diferentes tipos de fluvissolos. Avaliou-se a migração dos catiões através dos perfiis bem como a influência nas propriedades do solo da fixação mono e bimetálica Cd2+, Cu2+e Pb2+, a histerese e a mobilidade. Avaliou-se a irreversibilidade de sorção e a migração através dos perfis dos catiões estudados, por meio de índices de histerese e de migração, calculados a partir dos valores de capacidade de retenção (Kr) propostos e validados em trabalho anterior. Os resultados mostraram que as capacidades de sorção e retenção dos horizontes A foram maiores que as dos C, e que as capacidades de sorção e retenção individuais foram maiores que as capacidades competitivas. Os solos mostraram maiores capacidades de sorção e retenção de Pb2+, seguido de Cu2+ e Cd2+. Os óxidos de Mn, matéria orgânica, e consequentemente, a CTC são os componentes e propriedades com maior influência na sorção e retenção individual e competitiva de Pb2+. O Cd2+ não afeta a sorção e retenção de Pb2+ ou Cu2+. O teor de matéria orgânica somente se correlacionou com a histerese da sorção de Pb2+ devido à alta capacidade de fixação de Pb2+ deste componente e à sua menor capacidade de reter Cu2+ e Cd2+. Os Fluvissolos Tidálicos retiveram somente 0,4 e 0,2% do Cd2+ adicionado em competição com o Cu2+ ou o Pb2+, respectivamente. Entretanto, mais de 60% do Pb2+ e mais de 47% do Cu2+ adicionados foram retidos. O Pb2+ retido em competição com o Cu2+ foi de 98,2% do adicionado aos Fluvissolos Tidálicos e 47% nos Fluvissolos Úmbricos, enquanto que o Cu2+ retido foi de 93,8 e 29,9%, respectivamente, do adicionado. Esta retenção e a mobilidade de Cd2+ mostra a possibilidade de transferência de metais pesadospara as água subsuperficiais e através destas, de contaminação, ou mesmo de que estes metais entrem na cadeia alimentar.

Referencias bibliográficas

  • Arenas-Lago D, Vega FA, Silva LFO, Andrade ML. 2014. Copper distribution in surface and subsurface soil horizons. Environ Sci Pollut R. 21:10997-11008.
  • Arenas-Lago D, Vega FA, Silva LFO, Andrade ML. 2013. Soil interaction and fractionation of added cadmium in some Galician soils. Microchem J. 110: 681-690.
  • Arenas-Lago D, Vega FA, Silva LFO, Lago-Vila M, Andrade ML. 2014. Lead distribution between soil geochemical phases and its fractionation in Pb-treated soils. Fresen Environ Bull. 23(4):1025-1035.
  • Arias M, Pérez-Novo C, Osorio F, López E, Soto B. 2005. Adsorption and desorption of copper and zinc in the surface layer of acid soils. J Colloid Interf Sci. 288(1):21-29.
  • Benjamin MM, Leckie JO. 1981.Competitive adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interf Sci. 83(2):410-419.
  • Bradl HB. 2004. Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interf. Sci. 277:1-18.
  • Businelli D, Tombesi E. 2009. Factors involved in the retention and release of lead by a central Italian soil: A stirred-flow approach. Soil Sci.174:380-384.
  • Cao J, Lam KC, Dawson RW, Liu WX, Tao S. 2004.The effect of pH, ion strength and reactant content on the complexation of Cu2+ by various natural organic ligands from water and soil in Hong Kong. Chemosphere. 54(4):507-514.
  • CCME. Canada Council of Ministers of the Environment. 2007. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Tables. Winnipeg, Canada.
  • Cerqueira B, Covelo EF, Andrade L, Vega FA. 2011.The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd. Geoderma 162:20-26.
  • Chung FH. 1975. Quantitative interpretation of X-ray diffraction patterns, I, matrix-flushing method of quantitative multicomponent analysis. J Appl Crystallogr. 7: 519-525.
  • Covelo EF, Matías JM, Vega FA, Reigosa M., Andrade ML. 2008. A tree regression analysis of factors determining the sorption and retention of heavy metals by soil. Geoderma. 147:75-85.
  • D’Emilio M, Caggiano R, MacChiato M, Ragosta M, Sabia S. 2013. Soil heavy metal contamination in an industrial area: Analysis of the data collected during a decade. Environ Monit Assess. 185(7):5951-5964.
  • Day PR. Particle size analysis. 1965. In: Black CA, Evans DD, White JL, Ensminger LE, Clark FE, editors. Methods of Soil Analysis: Part 1. Madison, WI: Agronomy; 1965. p. 545–567.
  • Denaix L, Semlali RM, Douay F. 2001. Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition. Environ Pollut. 114(1):29-38.
  • Fontes MPF, Gomes PC. 2003. Simultaneous competitive adsorption of heavy metals by a mineral matrix of tropical soils. Appl Geochem. 18:795-804.
  • Giles CH, Smith D, Huitson A. 1974. A general treatment and classification of the solute adsorption isotherm: I. Theoretical. J Colloid Interf Sci. 47(3):755-765.
  • High Score Plus V 3.0d. 2011. Almelo, Netherlands: PANalytical BV. Netherlands Houba VJG, Temminghoff EJM, Gaikhorst GA, Van Vark W. 2000. Soil analysis procedures using 0.01M calcium chloride as extractation reagent. Commun Soil Sci Plan. 31(9-10):1299-1396.
  • Kabata-Pendias A. 2010. Trace Elements in Soils and Plants. 4th ed. New York: CRC Press. Lair GJ, Gerzabek MH, Haberhauer G. 2007. Sorption of heavy metals on organic and inorganic soil constituents. Environ Chem Lett. 5:23-27.
  • Lindsay WL, Norwell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J. 42:421-428.
  • Loganathan P, Vigneswaran S, Kandasamy J, Naidu R. 2012. Cadmium sorption and desorption in soils: a review. Crit Rev Env Sci Tec. 42(5):489-533.
  • Macías FV, Calvo de Anta R. 2009. Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Consellería de Medio Ambiente e Desenvolvemento Sostible, Xunta de Galicia. España.
  • McKeague JA, Day JH. 1966. Dithionithe and oxalate-extractable Fe and Al aids in differentiating various classes of soils. Can J Soil Sci. 46(1):13-22.
  • Murray RS, Quirk JP. 1990. Surface area of clays. Langmuir. 6(1):122-124.
  • Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett. 8(3):199-216.
  • NMHPPE. 2000. Environmental Quality Standards for Soil and Water. Ministry of Housing, Physical Planning and Environment. Leidschendam, Netherlands.
  • OECD. 2004. Guidelines for the Testing of Chemicals, Section 3. Degradation and Accumulation. Test No. 312: Leaching in Soil Columns, Organisation for Economic Co-operation and Development. Paris. France.
  • Shaheen SM, Tsadilas CD, Mitsibonas T, Tzouvalekas M. 2009. Distribution coefficient of Copper in different soils from Egypt and Greece. Commun Soil Sci Plan. 40(1-6):214-226.
  • Shaheen SM, Tsadilas CD, Rinklebe J. 2013. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil coloidal properties. Adv Colloid Interfac. 201-202:43-56.
  • Shaheen SM. 2009. Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma. 153:61-68.
  • Sherdrick BH, McKeague JA. 1975. A comparison of extractable Fe and Al data using methods followed in the U.S.A. and Canada. Can J Soil Sci. 55(1):77-78.
  • SIGPAC. 2015. Sistema de Información Geográfica de Parcelas Agrícolas. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid, España [cited 2015 Mar 3]. Available from: http://sigpac.magrama.es/fega/visor/. Slattery W, Conyers M, Aitken R. 1999. Soil pH, aluminium, manganese and lime requirement. In: Peverill KI, Sparrow L, Reuter D, editors. Soil Analysis: An Interpretation Manual. Australia: CSIRO. p. 103-125.
  • Soil Conservation Service. 1972. Dithionite citrate method. Soil, survey laboratory methods and procedures for collecting soil samples. Soil Survey Investigation Report n° 1. US Government Printing Office. Department of Agriculture. Washington DC. USA.
  • Vega FA, Covelo EF, Andrade ML. 2008. A versatile parameter for comparing the capacities of soils for sorption and retention of heavy metals dumped individually or together: Results for cadmium, copper and lead in twenty soil horizons. J Colloid Interface Sci. 327(2):275-286.
  • Vega FA, Covelo EF, Andrade ML. 2009a. Hysteresis in the individual and competitive sorption of cadmium, copper, and lead by various soil horizons. J Colloid Interf Sci. 331(2):312-317.
  • Vega FA, Covelo EF, Cerqueira B, Andrade ML. 2009b. Enrichment of marsh soils with heavy metals by effect of anthropic pollution. J Hazard Mater170:1056-1063.
  • Vega FA, Covelo EF, Cerqueira B, Andrade ML. 2011. Migration rates of Cd, Cu and Pb in different soil profiles. Fresen Environ Bull. 20(4):894-902.
  • Walkey A, Black IA. 1934. Examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic titration method. Soil Sci. 34(1):29-38.
  • WRBSR. 2006. World reference base for soil resources. IUSS Working Group. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 103, FAO. Rome.
  • Zhi-Yong H, Ting C, Jiang Y, De-Ping Q, Lan C. 2012. Lead contamination and its potential sources in vegetables and soils of Fujian, China. Environ Geochem Hlth. 34(1): 5-65.