Moisture transport from the Arctica characterization from a Lagrangian perspective

  1. Marta Vázquez Domínguez 1
  2. Raquel Nieto Muñiz 12
  3. Anita Drumond 1
  4. Luis Gimeno Presa 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  2. 2 Universidade de São Paulo
    info

    Universidade de São Paulo

    São Paulo, Brasil

    ROR https://ror.org/036rp1748

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Latron, J. (ed. lit.)
  2. Lana-Renault Monreal, Noemí (ed. lit.)

ISSN: 0211-6820 1697-9540

Ano de publicación: 2018

Volume: 44

Número: 2

Páxinas: 659-673

Tipo: Artigo

DOI: 10.18172/CIG.3477 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Cuadernos de investigación geográfica: Geographical Research Letters

Obxectivos de Desenvolvemento Sustentable

Resumo

The Arctic Ocean has suffered extreme reductions in sea ice in recent decades, and these observed changes suggest implications in terms of moisture transport. The Arctic region is a net sink of moisture in terms of the total hydrological cycle, however, its role as a moisture source for specific regions has not been extensively studied. Our results show that 80% of the moisture supply from the Arctic contributes to precipitation over itself, representing about 8% of the global moisture supply to the Arctic, the remaining 20% is distributed in the surrounding. A reduction in the sea ice extent could make the Arctic Ocean a slightly higher source of moisture to itself or to the surrounding areas. The analysis of the areas affected by Arctic moisture transport is important for establishing those areas vulnerable to change in a framework of a growing sea ice decline. To this end, the Lagrangian model FLEXPART was used in this work to establish the main sinks for the Arctic Ocean, focusing on the moisture transport from this region. The results suggest that most of the moisture loss occurs locally over the Arctic Ocean itself, especially in summer. Some moisture contribution from the Arctic Ocean to continental areas in North America and Eurasia is also noted in autumn and winter especially from Central Arctic, the East Siberian Sea, the Laptev, Kara, Barents, East Greenland and Bering Seas, and the Sea of Okhotsk.

Información de financiamento

The authors acknowledge funding by the Spanish government within the EVOCAR (CGL2015-65141-R) project, which is also funded by FEDER (European Regional Development Fund). Raquel Nieto was also supported by the Brazilian government through a CNPq grant 314734/2014-7.

Financiadores

Referencias bibliográficas

  • Boisvert, L.N., Wu, D.L., Shie, C.L. 2015. Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data. Journal of Geophysical Research: Atmospheres 120 (14), 6865-6881. https://doi.org/10.1002/2015JD023258.
  • Bowman, K.P., Lin, J.C., Stohl, A., Draxler, R., Konopka, P., Andrews, A., Brunner, D. 2013. Input Data Requirements for Lagrangian Trajectory Models. Bulletin of the American Meteorological Society 94, 1051-1058. https://doi.org/10.1175/BAMS-D-12-00076.1.
  • Castillo, R., Nieto, R., Drumond, A., Gimeno, L. 2014. Estimating the temporal domain when the discount of the net evaporation term affects the resulting net precipitation pattern in the moisture budget using a 3-D Lagrangian approach. PLoS ONE 9 (6). https://doi.org/10.1371/journal.pone.0099046.
  • Cavalieri, D.J., Parkinson, C.L. 2012. Arctic sea ice variability and trends, 1979-2010. The Cryosphere 6, 881-889. https://doi.org/10.5194/tc-6-881-2012.
  • Cohen, J., Screen, J.A., Furtado, J.C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., Jones, J. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7, 627-637. https://doi.org/10.1038/ngeo2234.
  • Comiso, J.C., Hall, D.K. 2014. Climate trends in the Arctic as observed from space. WIREs Climate Change 5, 389-409. https://doi.org/10.1002/wcc.277.
  • Comiso, J.C., Parkinson, C.L., Gersten, R., Stock, L. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 35, L01703. https://doi.org/10.1029/2007GL031972.
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K, Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N., Vitart, F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological. Society. 137, 553-597. https://doi.org/10.1002/qj.828.
  • Fetterer, F., Knowles, K., Meier, W., Savoie, M. 2016, updated daily. Sea Ice Index, Version 2. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5736NV7.
  • Gimeno, L., Stohl, A., Trigo, R.M., Domínguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán-Quesada, A.M., Nieto R. 2012. Oceanic and terrestrial sources of continental precipitation. Reviews of Geophysics 50, RG4003. https://doi.org/10.1029/2012RG000389.
  • Gimeno, L., Nieto R., Drumond, A., Castillo, R., Trigo, R.M. 2013. Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophysical Research Letters 40, 1443-1450. https://doi.org/10.1002/grl.50338.
  • Groves, D.G., Francis, J.A. 2002. Moisture budget of the Arctic atmosphere from TOVS satellite data. Journal of Geophysical Research 107 (D19), 4391. https://doi.org/10.1029/2001JD001191.
  • Holland, M.M., Bitz, C.M., Tremblay, B. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters 33, L23503. https://doi.org/10.1029/2006GL028024.
  • Koerner, R., Russell, R.D. 1979. Delta-O-18 variations in snow on the Devon Island Ice Cap, Northwest-Territories, Canada. Canadian Journal of Earth Sciences 16 (7), 1419-1427. https://doi.org/10.1139/e79-126.
  • Liu, J.P., Curry, J.A., Wang, H.J., Song, M.R., Horton, R.M. 2012. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences USA 109, 4074-4079. https://doi.org/10.7312/li--16274-011.
  • Meier, W.N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., Stroeve, J. 2013. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration. 2 ed. N. S. a. I. D. Center, Ed., NSIDC.
  • Nieto, R., Gimeno, L., Gallego, D., Trigo, R. 2007. Contributions to the moisture budget of airmasses over Iceland, Meteorologische Zeitschrift 16 (1), 37-44. https://doi.org/10.1127/0941-2948/2007/0176.
  • Numagati, A. 1999. Origin and recycling processes of precipitation water over the Eurasian continent: Experiments using an atmospheric general circulation model. Journal of Geophysical Research 104, 1957-1972. https://doi.org/10.1029/1998JD200026.
  • Overlan, J.E., Wang, M. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62, 1-9. https://doi.org/10.1111/j.1600-0870.2009.00421.x.
  • Overland, J.E., Wang, M., Walsh, J.E., Stroeve, J.C. 2014. Future Arctic climate changes: Adaptation and mitigation time scales. Earth's Future 2, 68-74. https://doi.org/10.1002/2013EF000162.
  • Park, H, Walsh, J.E, Kim, Y, Nakai, T., Ohata T. 2013. The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths. Polar Science 7, 174-187. https://doi.org/10.1016/j.polar.2012.10.002.
  • Parkinson, C.L., Di Girolamo, N.E. 2016. New visualizations highlight new information on the contrasting Arctic and Antarctic sea-ice trends since the late 1970s. Remote Sensing of Environment 183, 198-204. https://doi.org/10.1016/j.rse.2016.05.020.
  • Polyakov, I.V., Walsh, J.E., Kwok, R. 2012. Recent Changes of Arctic Multiyear Sea Ice Coverage and the Likely Causes. Bulletin of the American Meteorological Society 93, 145-151. https://doi.org/10.1175/BAMS-D-11-00070.1.
  • Scarchilli, C., Frezzotti, M., Ruti, P.M. 2011. Snow precipitation at four ice core sites in East Antarctica: provenance, seasonality and blocking factors. Climate Dynamics 37, 2107-2125. https://doi.org/10.1007/s00382-010-0946-4.
  • Schlosser, E., Oerter, H., Masson-Delmotte, V., Reijmer, C.H. 2008. Atmospheric influence on the deuterium excess signal in polar firn: implications for ice-core interpretation. Journal of Glaciology 54 (184), 117-124. https://doi.org/10.3189/002214308784408991.
  • Serreze, M.C., Barrett, A.P., Slater, A.G., Woodgate, R.A., Aagaard, K., Lammers, R.B., Steele, M., Moritz, R., Meredith, M., Lee, C.M. 2006. The large-scale freshwater cycle of the Arctic. Journal of Geophysical Research 111, C11010. https://doi.org/10.1029/2005JC003424.
  • Sodemann, H., Schwierz, C., Wernli, H. 2008. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence, Journal of Geophysical Research 113, D03107. https://doi.org/10.1029/2007JD008503.
  • Stohl, A., James, P. 2004. A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part I: Method Description, Validation, and Demonstration for the August 2002 Flooding in Central Europe. Journal of Hydrometeorology 5, 656-678. https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.
  • Stohl, A., James, P.A. 2005. A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle. Part II: Moisture Transports between Earth’s Ocean Basins and River Catchments. Journal of Hydrometeorology 6, 961-984. https://doi.org/10.1175/JHM470.1.
  • Stohl, A., Forster, C., Sodemann, H. 2008. Remote sources of water vapor forming precipitation on the Norwegian west coast at 60 N-A tale of hurricanes and an atmospheric river. Journal of Geophysical Research Atmospheres 113, D05102. https://doi.org/10.1029/2007JD009006.
  • Stohl, A., Haimberger, L., Scheele, M.P., Wernli, H. 2001. An intercomparison of results from three trajectory models. Meteorological Applications 8 (2), 127-135. https://doi.org/10.1017/S1350482701002018.
  • Stroeve, J.C., Markus, T., Boisvert, L., Miller, J., Barrett, A. 2014. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters 41, 1216-1225. https://doi.org/10.1002/2013GL058951.
  • Stroeve, J.C., Mioduszewski, J.R., Rennermalm, A., Boisvert, L.N., Tedesco, M., Robinson, D. 2017. Investigating the local scale influence of sea ice on Greenland surface melt. The Cryosphere Discussions. https://doi.org/10.5194/tc-2017-65.
  • Vázquez, M., Nieto, R., Drumond, A., Gimeno, L. 2016. Moisture transport into the Arctic: Source-receptor relationships and the roles of atmospheric circulation and evaporation. Journal of Geophysical Research: Atmospheres 121, 13,493-13,509. https://doi.org/10.1002/2016JD025400.
  • Vihma, T. 2014. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surveys in Geophysics 35, 1175. https://doi.org/10.1007/s10712-014-9284-0.
  • Vihma, T., Screen, J., Tjernström, M., Newton, B., Zhang, X., Popova, V., Deser, C., Holland, M., Prowse, T. 2016. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. Journal of Geophysical Research: Biogeosciences 121, 586-620. https://doi.org/10.1002/2015JG003132.
  • Wang, M., Overland, J.E. 2009. A sea ice free summer Arctic within 30 years? Geophysical Research Letters 36, L07502. https://doi.org/10.1029/2009GL037820.
  • Wegmann, M., Orsolini, Y., Vázquez, M., Gimeno, L., Nieto, R., Bulygina, O., Jaiser, R., Handorf, D., Rinke, A., Dethloff, K., Sterin, A., Brönnimann, S. 2015. Arctic moisture source for Eurasian snow cover variation in autumn. Environmental Research Letters 10, 054015. https://doi.org/10.1088/1748-9326/10/5/054015.