Exoesqueletos en lesión medular

  1. E. Pérez-Alén
  2. Y. González-González
  3. I. Da Cuña carrera
  4. A. Alonso-Calvete
Revista:
Trances: Transmisión del conocimiento educativo y de la salud

ISSN: 1989-6247

Año de publicación: 2020

Volumen: 12

Número: 3

Páginas: 321-348

Tipo: Artículo

Otras publicaciones en: Trances: Transmisión del conocimiento educativo y de la salud

Resumen

Las lesiones medulares producen una pérdida de las funciones motoras y sensitivas, dando como resultados un desacondicionamiento físico severo. Una de las terapias emergentes que hay en la actualidad, es la utilización de exoesqueletos. El objetivo de este estudio es conocer la aplicabilidad de los exoesqueletos en lesionados medulares. Se ha llevado a cabo una revisión de la literatura científica mediante una búsqueda sistematizada durante enero y febrero de 2018 en las bases de datos Cinhal, Medline y Scopus, usando los descriptores MeSH: "Exoskeleton device" y “Spinal Cord Injuries” unidos mediante el operador booleano "AND". Tras la aplicación de los criterios de exclusión e inclusión, se analizaron 14 artículos. Las variables de estudio fueron la espasticidad, el dolor, la fatiga, la densidad mineral ósea, el esfuerzo, la seguridad, comodidad y fiabilidad. Se han encontrado resultados positivos en los lesionados medulares, ya que produce beneficios en todos los ámbitos de la esfera biopsicosocial.

Referencias bibliográficas

  • Officer A, Shakespeare T, von Groote P, Organization WH, Society TISC, Bickenbach,J. International perspectives on spinal cord injury. Malta: WHO; 2013.
  • McDonald JW, Sadowsky C. Spinal-cord injury. The Lancet. 2002;359(9304):417-25.
  • Stampacchia G, Rustici A, Bigazzi S, Gerini A, Tombini T, Mazzoleni S. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation. 2016;39(2):277-83.
  • Birch N, Graham J, Priestley T, Heywood C, Sakel M, Gall A, etal. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid. J NeuroEngineering Rehabil. 2017;14(1):1-10.
  • Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001;26(24):2-12.
  • Edgerton VR, Tillakaratne NJK, Bigbee AJ, de Leon RD, Roy RR. PLASTICITY OF THE SPINAL NEURAL CIRCUITRY AFTER INJURY. Annu Rev Neurosci. 2004;27(1):145-67.
  • Popovic DB, Popovic MB, Sinkjaer T. Neurorehabilitation of Upper Extremities in Humans with Sensory-Motor Impairment: Functional Electrical Therapy. Neuromodulation Technol Neural Interface. 2002;5(1):54-66.
  • Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, etal. Changes in Supraspinal Activation Patterns following Robotic Locomotor Therapy in Motor-Incomplete Spinal Cord Injury. Neurorehabil Neural Repair. 2005;19(4):313-24.
  • Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016;30(1):73-84.
  • Lemaire ED, Smith AJ, Herbert-Copley A, Sreenivasan V. Lower extremity robotic exoskeleton training: Case studies for complete spinal cord injury walking. Krebs HI, editor. NeuroRehabilitation. 2017;41(1):97-103.
  • Karelis A, Carvalho L, Castillo M, Gagnon D, Aubertin-Leheudre M. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 2017;49(1):84-7.
  • Wolff J, Parker C, Borisoff J, Mortenson W, Mattie J. A survey of stakeholder perspectives on exoskeleton technology. J NeuroEngineering Rehabil. 2014;11(1):169.
  • Sale P, Russo EF, Russo M, Masiero S, Piccione F, Calabrò RS, etal. Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: a preliminary report. BMC Neurol. 2016;16(1):1-8.
  • Chang SR, Nandor MJ, Li L, Kobetic R, Foglyano KM, Schnellenberger JR, etal. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. J NeuroEngineering Rehabil. 2017;14(1):1-12.
  • Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, etal. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Top Spinal Cord Inj Rehabil. 2015;21(2):93-9.
  • Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen A. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2015;21(2):100-9.
  • Kozlowski A, Bryce T, Dijkers M. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil. 2015;21(2):110-21.
  • Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2015;21(2):122-32.
  • Kim B, In H, Lee D-Y, Cho K-J. Development and assessment of a hand assist device: GRIPIT. JNeuroEngineering Rehabil. 2017;14(1):1-14.
  • Cruciger O, Schildhauer TA, Meindl RC, Tegenthoff M, Schwenkreis P, Citak M, etal. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study. Disabil Rehabil Assist Technol. 2014;1-6.
  • Lu Z, Tong K, Shin H, Stampas A, Zhou P. Robotic Hand–Assisted Training for Spinal Cord Injury Driven by Myoelectric Pattern Recognition: A Case Report. Am J Phys Med Rehabil. 2017;96:146-9.