Sorption of Antibiotics in Agricultural Soils as a Function of pH

  1. Lucía Rodríguez López 1
  2. Vanesa Santás Miguel 1
  3. Raquel Cela Dablanca 2
  4. Avelino Núñez Núñez Delgado 3
  5. Esperanza Álvarez Rodríguez 3
  6. Andrés Rodríguez Seijo 1
  7. Manuel Arias Estévez 1
  1. 1 Universidade de Vigo
    info

    Universidade de Vigo

    Vigo, España

    ROR https://ror.org/05rdf8595

  2. 2 Universidade de Santiago
  3. 3 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Ano de publicación: 2024

Volume: 14

Número: 1

Tipo: Artigo

DOI: 10.3389/SJSS.2024.12402 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Spanish Journal of Soil Science: SJSS

Resumo

This study aims to understand the adsorption/desorption process in six agricultural soils of two antibiotics, Ciprofloxacin (CIP) and Trimethoprim (TRI), widely used today and the influence of pH on this process. Antibiotics can reach the soil through the application of sludge and effluents from wastewater treatment plants and are directly influenced by changes in pH, once in the soil. Therefore, this study with batch experiments allows us to know the adsorption process in a pH range between 2 and 12, in six soils with different organic carbon content, between 1% and 7.7%. The results obtained show that the adsorption of CIP has its maximum at pH between 5 and 7; above and below this range, the adsorption decreases. The soils with the highest organic carbon content (between 4.4% and 7.7%) are those with the highest adsorption. The values for each forms in which the CIP molecule is found are: for KdCIP+, between 0.887 and 8.289 L kg−1; for KdCIP−, between 0.670 and 5.440 L kg−1, while for KdCIP0, the values do not differ from 0, except soils 1 and 3, whose values are 0.206 and 0.615 L kg−1, respectively. Regarding TRI, the maximum adsorption takes place at acidic pHs, below 6 for all soils. Above these values, desorption decreases. The Kd values for each of the species vary between 0.085 and 0.218 L kg−1 for KdTRI+, between 0.011 and 0.056 L kg−1 for KdTRI0, and between 0.092 and 0.189 L kg−1 for KdTRI−. For both antibiotics, the highest adsorption was achieved in the soil with the highest organic carbon content (7.7%). Comparing both antibiotics, we see that CIP presents the highest adsorption, and in the case of desorption, for CIP, it varies between 3.7% and 75.8%, with the maximum desorption at basic pHs. In the case of TRI, desorption is higher, varying between 9.4% and 99.1%, with the maximum around neutrality, except for two soils, whose maximums are at pH of 4.3 and 9.5. These results should be taken into account, as once they reach the soil, pH will be a determining factor in their behaviour and fate.

Información de financiamento

Financiadores

Referencias bibliográficas

  • Álvarez-Esmorís, C., Rodríguez-López, L., Núñez-Delgado, A., Álvarez-Rodríguez, E., Fernández-Calviño, D., and Arias-Estévez, M. (2022). Influence of pH on the Adsorption-Desorption of Doxycycline, Enrofloxacin, and Sulfamethoxypyridazine in Soils With Variable Surface Charge. Environ. Res. 214, 114071. doi:10.1016/j.envres.2022.114071
  • Anuar, N. F., Shah, DRSI, Ramli, F. F., Zaini, M. S. M., Mohammadi, N. A., Daud, A. R. M., et al. (2023). The Removal of Antibiotics in Water by Chemically Modified Carbonaceous Adsorbents From Biomass: A Systematic Review. J. Clean. Prod. 401, 136725. doi:10.1016/j.jclepro.2023.136725
  • Barreiro, A. P., Cela-Dablanca, R., Nebot, C., Rodríguez-López, L., Santás-Miguel, V., Arias-Estévez, M., et al. (2022). Occurrence of Nine Antibiotics in Different Kinds of Sewage Sludge, Soils, Corn and Grapes After Sludge Spreading. Span. J. Soil Sci. 12, 10741. doi:10.3389/sjss.2022.10741
  • Carmosini, N., and Lee, L. S. (2009). Ciprofloxacin Sorption by Dissolved Organic Carbon From Reference and Bio-Waste Materials. Chemosphere 77, 813–820. doi:10.1016/j.chemosphere.2009.08.003
  • Chen, G., Wu, J., Ma, J., Xu, M., Long, L., Chen, C., et al. (2023). Ciprofloxacin Sorption to Purple Soil: Potential Mechanisms and Factors Influencing Sorption. J. Environ. Chem. Eng. 11, 110626. doi:10.1016/j.jece.2023.110626
  • De-Levie, R. (1999). Aqueous Acid-Base Equilibria and Tritation. Oxford, New York, USA: Oxford University Press, 96.
  • Dimpe, K. M., and Nomngongo, P. N. (2019). Application of Activated Carbon-Decorated Polyacrylonitrile Nanofibers as an Adsorbent in Dispersive Solid-Phase Extraction of Fluoroquinolones From Wastewater. J. Pharm. Anal. 9, 117–126. doi:10.1016/j.jpha.2019.01.003
  • Enke, C. G. (2001). The Art and Science of Chemical Analysis. New York, USA: Wiley, 500.
  • Ferraro, A., Marino, E., Trancone, G., Race, M., Mali, M., Pontoni, L., et al. (2023). Assessment of Environmental Parameters Effect on Potentially Toxic Elements Mobility in Foreshore Sediments to Support Marine-Coastal Contamination Prediction. Mar. Pollut. Bull. 194, 115338. doi:10.1016/j.marpolbul.2023.115338
  • Ghirardini, A., Grillini, V., and Verlicchi, P. (2020). A Review of the Occurrence of Selected Micropollutants and Microorganisms in Different Raw and Treated Manure – Environmental Risk Due to Antibiotics After Application to Soil. Sci. Total Environ. 707, 136118. doi:10.1016/j.scitotenv.2019.136118
  • Jalil, M. E. R., Baschini, M., and Sapag, K. (2015). Influence of pH and Antibiotic Solubility on the Removal of Ciprofloxacin From Aqueous Media Using Montmorillonite. Appl. Clay Sci. 114, 69–76. doi:10.1016/j.clay.2015.05.010
  • Jodeh, S., Jaber, A., Hanbali, G., Massad, Y., Safi, Z. S., Radi, S., et al. (2022). Experimental and Theoretical Study for Removal of Trimethoprim From Wastewater Using Organically Modified Silica With Pyrazole-3-Carbaldehyde Bridged to Copper Ions. BMC Chem. 16, 17. doi:10.1186/s13065-022-00814-0
  • Kashyap, A., Nashil, B., and Thatikonda, S. (2023). Experimental and Numerical Elucidation of the Fate and Transport of Antibiotics in Aquatic Environment: A Review. Environ. Monit. Assess. 195, 942. doi:10.1007/s10661-023-11482-5
  • Khan, S., Naushad, M., Govarthanan, M., Iqbal, J., and Alfadul, S. M. (2022). Emerging Contaminants of High Concern for the Environment: Current Trends and Future Research. Environ. Res. 207, 112609. doi:10.1016/j.envres.2021.112609
  • Kocárek, M., Kodesová, R., Vondrácková, L., Golovko, O., Fér, M., Klement, A., et al. (2016). Simultaneous Sorption of Four Ionizable Pharmaceuticals in Different Horizons of Three Soil Types. Environ. Pollut. 218, 563–573. doi:10.1016/j.envpol.2016.07.039
  • Li, H., Zhang, D., Han, X., and Xing, B. (2014). Adsorption of Antibiotic Ciprofloxacin on Carbon Nanotubes: PH Dependence and Thermodynamics. Chemosphere 95, 150–155. doi:10.1016/j.chemosphere.2013.08.053
  • Li, J., and Zhang, H. (2017). Factors Influencing Adsorption and Desorption of Trimethoprim on Marine Sediments: Mechanisms and Kinetics. Environ. Sci. Pollut. Res. 24, 21929–21937. doi:10.1007/s11356-017-9693-y
  • Liu, X., Luo, Y., Zhang, H., Wu, J., Zhu, R., and Wang, H. (2022). Spatial Heterogeneity of Particulate Organic Matter for the Sorption of Ciprofloxacin at the Microstructure Scale. Sci. Total Environ. 847, 157326. doi:10.1016/j.scitotenv.2022.157326
  • Lu, X.-M., Lu, L.-B., Lin, Y.-H., Chen, Z.-Y., and Chen, J.-H. (2023). Exploring the Interaction Between Agronomic Practices and Soil Characteristics on the Presence of Antibiotic Resistance Genes in Soil. Appl. Soil Ecol. 187, 104837. doi:10.1016/j.apsoil.2023.104837
  • Mejías, C., Santos, J. L., Martín, J., Aparicio, I., and Alonso, E. (2023). Thermodynamic and Kinetic Investigation of the Adsorption and Desorption of Trimethoprim and its Main Metabolites in Mediterranean Crop Soils. Molecules 28, 437. doi:10.3390/molecules28010437
  • Mpatani, F. M., Aryee, A. A., Kani, A. N., Han, R., Li, Z., Dovi, E., et al. (2021). A Review of Treatment Techniques Applied for Selective Removal of Emerging Pollutant-Trimethoprim From Aqueous Systems. J. Clean. Prod. 308, 127359. doi:10.1016/j.jclepro.2021.127359
  • Ncibi, M. C., and Sillanpää, M. (2015). Optimized Removal of Antibiotic Drugs From Aqueous Solutions Using Single, Double and Multi-Walled Carbon Nanotubes. J. Hazard Mater 298, 102–110. doi:10.1016/j.jhazmat.2015.05.025
  • Pasket, A., Zhang, H., Wang, Y., Krzmarzick, M. J., Gustafson, J. E., and Deng, S. (2022). Clay Content Played a Key Role Governing Sorption of Ciprofloxacin in Soil. Front. Soil Sci. 2, 814924. doi:10.3389/fsoil.2022.814924
  • Pérez-Novo, C., Bermúdez-Couso, A., López-Periago, E., Fernández-Calviño, D., and Arias-Estévez, M. (2009). The Effect of Phosphate on the Sorption of Copper by Acid Soils. Geoderma 150, 166–170. doi:10.1016/j.geoderma.2009.02.001
  • Rodríguez-López, L., Cela-Dablanca, R., Núñez-Delgado, A., Álvarez-Rodríguez, E., Fernández-Calviño, D., and Arias-Estévez, M. (2021). Photodegradation of Ciprofloxacin, Clarithromycin and Trimethoprim: Influence of pH and Humic Acids. Molecules 26, 3080. doi:10.3390/molecules.26113080
  • Rodríguez-López, L., Santás-Miguel, V., Núñez-Delgado, A., Álvarez-Rodríguez, E., Pérez-Rodríguez, P., and Arias-Estévez, M. (2022a). Influence of pH, Humic Acids, and Salts on the Dissipation of Amoxicillin and Azithromycin Under Simulated Sunlight. Span. J. Soil Sci. 12, 10438. doi:10.3389/sjss.2022.10438
  • Rodríguez-López, L., Santás-Miguel, V., Cela-Dablanca, R., Núñez-Delgado, A., Álvarez-Rodríguez, E., Pérez-Rodríguez, P., et al. (2022b). Ciprofloxacin and Trimethoprim Adsorption/Desorption in Agricultural Soils. Int. J. Environ. Res. Public Health 19, 8426. doi:10.3390/ijerph19148426
  • Sagaseta de Ilurdoz, M., Sadhwani, J. J., and Reboso, J. V. (2022). Antibiotic Removal Processes From Water and Wastewater for the Protection of the Aquatic Environment - a Review. J. Water Process Eng. 45, 102474. doi:10.1016/j.jwpe.2021.102474
  • Tran, N. H., Reinhard, M., and Gin, K. Y.-H. (2018). Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants From Different Geographical Regions-A Review. Water Res. 133, 182–207. doi:10.1016/j.watres.2017.12.029
  • Vasudevan, D., Bruland, G. L., Torrance, B. S., Upchurch, V. G., and MacKay, A. A. (2009). pH-Dependent Ciprofloxacin Sorption to Soils: Interaction Mechanisms and Soil Factors Influencing Sorption. Geoderma 151, 68–76. doi:10.1016/j.geoderma.2009.03.007
  • Xiang, Y., Xu, Z., Wei, Y., Zhou, Y., Yang, X., Yang, Y., et al. (2019). Carbon-Based Materials as Adsorbent for Antibiotics Removal: Mechanisms and Influencing Factors. J. Environ. Manage 237, 128–138. doi:10.1016/j.jenvman.2019.02.068
  • Zhang, Y.-L., Lin, S.-S., Dai, C.-M., Shi, L., and Zhou, X.-F. (2014). Sorption–Desorption and Transport of Trimethoprim and Sulfonamide Antibiotics in Agricultural Soil: Effect of Soil Type, Dissolved Organic Matter, and pH. Environ. Sci. Pollut. Res. 21, 5827–5835. doi:10.1007/s11356-014-2493-8