Introduction Chapter for the Book “Frontier Studies in Soil Science”

  1. Núñez-Delgado, Avelino
  2. Álvarez-Rodríguez, Esperanza
  3. Fernández-Sanjurjo, María J.
  4. Barreiro-Buján, Ana
  5. Rodríguez-Seijo, Andrés
  6. Villaverde, Juan José
  7. Díaz-Raviña, Montserrat
  8. Mataix-Solera, Jorge
Livre:
Frontier Studies in Soil Science

ISSN: 3004-9865 3004-9873

ISBN: 9783031505027 9783031505034

Année de publication: 2024

Pages: 1-20

Type: Chapitre d'ouvrage

DOI: 10.1007/978-3-031-50503-4_1 GOOGLE SCHOLAR lock_openAccès ouvert editor

Résumé

In this introductory chapter the authors show their views on what they consider current and future fundamental issues to advance knowledge and research in Soil Science. Each of the authors gives responses to a question posed by the scientific editor of the book. Furthermore, additional data is included to show a picture corresponding to the current situation of the theme, as per different scientific searching tools.

Références bibliographiques

  • Ahmed A, He P, He P, Wu Y, He Y, Munir S (2023) Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. Environ Int 173:107819. https://doi.org/10.1016/j.envint.2023.107819
  • Amundson R, Berhe A, Hopmans J, Olson C, Sztein AE, Sparks D (2015) Soil and human security in the 21st century. Science 348:6235. https://doi.org/10.1126/science.1261071
  • Añó Vidal C, Sánchez Díaz J, Carbó Valverde E (2022) Efectos de los incendios en los suelos forestales de la Comunidad Valenciana. Revisión bibliográfica. Cuaternario y Geomorfología 36(1–2):53–75. https://doi.org/10.17735/cyg.v36i1-2.92407
  • Baldrian P (2019) The known and the unknown in soil microbial ecology: minireview. FEMS Microbial Ecol 95:fiz005. http://orcid.org/0000-0002-8983-2721
  • Barget RD, Caruso T (2020) Soil microbial communities responses to climate change: resistance, resilience and transitions to alternative states. Philos Trans R Soc B 375:20190112. https://doi.org/10.1098/rstb.2019.0112
  • Barreiro A, Fox A, Jongen M, Melo J, Musyoki M, Vieira A, Zimmermann J, Carlsson G, Cruz C, Lüscher A, Rasche F, Silva L, Widmer F, Dimitrova Martensson LM (2022) Soil bacteria respond to regional edapho-climatic conditions while soil fungi respond to management intensity in grasslands along a European transect. Appl Soil Ecol 170:104264. https://doi.org/10.1016/j.apsoil.2021.104264
  • Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B (2022) A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol. https://doi.org/10.3389/fmicb.2022.938481
  • Borrelli P, Alewell C, Alvarez P, Anache JAA, Baartman J, Ballabio C et al (2021) Soil erosion modelling: a global review and statistical analysis. Sci Total Environ 780:146494. https://doi.org/10.1016/j.scitotenv.2021.146494
  • Boxall A (2009) The handbook of environmental chemistry, vol XIV, Part 2P, Transformation products of synthetic chemicals in the environment. Springer, Berlin, p 249. https://doi.org/10.1007/978-3-540-88273-2
  • Boxall ABA, Sinclair CJ, Fenner K, Kolpin D, Maund SJ (2004) Peer reviewed: when synthetic chemicals degrade in the environment. Environ Sci Technol 38(19):368A–375A. https://doi.org/10.1021/es040624v
  • Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost J (2015) The interdisciplinary nature of soil. Soil 1:117–129. https://doi.org/10.5194/soil-1-117-2015
  • Brusseau ML, Anderson RH, Guo B (2020) PFAS concentrations in soils: background levels versus contaminated sites. Sci Total Environ 740:140017. https://doi.org/10.1016/j.scitotenv.2020.140017
  • Büks F, Kaupenjohann M (2020) Global concentrations of microplastics in soils—a review. Soil 6:649–662. https://doi.org/10.5194/soil-6-649-2020
  • Clark RD (2018) Predicting mammalian metabolism and toxicity of pesticides in silico. Pest Manag Sci 74(9):1992–2003. https://doi.org/10.1002/ps.4935
  • Collins L, Clarke H, Clarke MF, McColl Gausden SC, Nolan RH, Penman T, Bradstock R, Varner M (2022) Warmer and drier conditions have increased the potential for large and severe fire seasons across South-Eastern Australia. Glob Ecol Biogeogr 31:1933. https://doi.org/10.1111/geb.13514
  • Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front Microbiol 10:338. https://doi.org/10.3389/fmicb.2019.00338
  • Doerr SH, Santín C, Mataix-Solera J (2022) Fire effects on soil. Ref Modul Earth Syst Environ Sci. https://doi.org/10.1016/B978-0-12-822974-3.00106-3
  • Duchowicz PR, Aranda JF, Bacelo DE, Fioressi SE (2020) QSPR study of the Henry’s law constant for heterogeneous compounds. Chem Eng Res Des 154:115–121. https://doi.org/10.1016/j.cherd.2019.12.009
  • EFSA (2009) The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J 7(3):958. https://doi.org/10.2903/j.efsa.2009.958
  • EFSA (2014) EFSA guidance document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA J 12(5):3662. https://doi.org/10.2903/j.efsa.2014.3662
  • EFSA (2017) EFSA guidance document for predicting environmental concentrations of active substances of plant protection products and transformation products of these active substances in soil. EFSA J 15(10):e04982. https://doi.org/10.2903/j.efsa.2017.4982
  • Evans DL, Janes-Bassett V, Borrelli P, Chenu C, Ferreira CSS, Griffiths RI, Kalantari Z, Keesstra S, Lal R, Panagos P, Robinson DA, Seifollahi-Aghmiuni S, Smith P, Steenhuis TS, Thomas A, Visser SM (2022) Sustainable futures over the next decade are rooted in soil science. Eur J Soil Sci 73(1):e13145. https://doi.org/10.1111/ejss.13145
  • FAO (2021) FAO soil portal. https://www.fao.org/soils-portal/soildegradation-restoration
  • Fierer N, Wood SA, Bueno de Mesquita CP (2021) How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem 153:108111. https://doi.org/10.1016/j.soilbio.2020.108111
  • Friedrichsen CN, Mizuta K, Wulfhorst JD (2022) Advancing the intersection of soil and well-being systems science. Soil Secur 6:100036. https://doi.org/10.1016/j.soisec.2022.100036
  • García-Carmona M, Arcenegui V, García-Orenes F, Mataix-Solera J (2023) The recovery of soils after post-fire management: the role of biocrusts and soil microbial communities. Span J Soil Sci 13:11388. https://doi.org/10.3389/sjss.2023.11388
  • Gotsmy M, Escalona Y, Oostenbrink C, Petrov D (2021) Exploring the structure and dynamics of proteins in soil organic matter. Proteins: Struct Funct Bioinform 89(8):925–936. https://doi.org/10.1002/prot.26070
  • Gregory PJ, George TS, Paterson E (2022) New methods for new questions about rhizosphere/plant root interactions. Plant Soil 476(1–2):699–712. https://doi.org/10.1007/s11104-022-05437-x
  • Hartemink AE, McBratney A (2008) A soil science renaissance. Geoderma 148(2):123–129. https://doi.org/10.1016/j.geoderma.2008.10.006
  • Humphries M (2010) Rare earth elements: the global supply chain. CRS-Report for Congress-4137, Diane Publishing
  • Karlen DL, Veum KS, Sudduth KA, Obrycki JF, Nunes MR (2019) Soil health assessment: past accomplishments, current activities, and future opportunities. Soil Tillage Res 195:104365. https://doi.org/10.1016/j.still.2019.104365
  • Kumar P, Singh A, Rajput V, Singh Yadav AK, Kumar P, Singh AK, Minkina T (2022) Chapter 36—Role of artificial intelligence, sensor technology, big data in agriculture: next-generation farming. In: Sharma P, Yadav D, Kumar Gaur R (eds) Bioinformatics in agriculture, pp 625–639. https://doi.org/10.1016/B978-0-323-89778-5.00035-0
  • Kumara TM, Pal S, Chand P, Kandpal A (2023) Carbon sequestration potential of sustainable agricultural practices to mitigate climate change in Indian agriculture: a meta-analysis. Sustain Prod Consum 35:697. https://doi.org/10.1016/j.spc.2022.12.015
  • Lal R, Bouma J, Brevik EC, Dawson LA, Field DJ, Glaser B, Hatano R, Hartemink AE, Kosaki T, Lascelles B, Monger CH, Muggler CC, Ndzana GM, Norra S, Pan X, Paradelo R, Reyes-Sánchez LB, Sandén T, Singh BR, Spiegel H, Yanai J, Zhang J (2021) Soils and sustainable development goals of the United Nations: an International Union of Soil Sciences perspective. Geoderma Reg 25:e00398. https://doi.org/10.1016/j.geodrs.2021.e00398
  • Liu Q, Cheng L, Nian H, Jin J, Lian T (2023) Linking plant functional genes to rhizosphere microbes: a review. Plant Biotechnol J 21:902–917. https://doi.org/10.1111/pbi.13950
  • Loiseau C, Sorci G (2022) Can microplastics facilitate the emergence of infectious diseases? Sci Total Environ 823:153694. https://doi.org/10.1016/j.scitotenv.2022.153694
  • Maqsood T, Dai J, Zhang Y, Guang M, Li B (2021) Pyrolysis of plastic species: a review of resources and products. J Anal Appl Pyrol 159:105295. https://doi.org/10.1016/j.jaap.2021.105295
  • Mataix-Solera J, Arellano EC, Jaña JE, Olivares L, Guardiola J, Arcenegui V, García-Carmona M, García-Franco N, Valenzuela P (2021) Soil vulnerability indicators to degradation by wildfires in Torres del Paine National Park (Patagonia, Chile). Span J Soil Sci 11:10008. https://doi.org/10.3389/sjss.2021.10008
  • Muhammad S, Hu J, Jousset A (2019) More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst 50:145–168. https://doi.org/10.1146/annurev-ecolsys-110617-062605
  • Núñez-Delgado A, Otero-Pérez XL, Álvarez-Rodríguez E (2023) Editorial: current research on soil science and related aspects of environmental sciences in Galicia. Span J Soil Sci 13.https://doi.org/10.3389/sjss.2023.11485
  • Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Craig P, de Jong F, Manachini B, Sousa P, Swarowsky K, Auteri D, Arena M, Rob S (2017) Scientific opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA J 15(2):e04690. https://doi.org/10.2903/j.efsa.2017.4690
  • Paul K, Chatterjee SS, Pai P, Varshney AK, Juikar SJ, Prasad V, Bhadra B, Dasgupta S (2022) Viable smart sensors and their application in data driven agriculture. Comput Electron Agric 198:107096. https://doi.org/10.1016/j.compag.2022.107096
  • Pereira P, Bogunovic I, Muñoz-Rojas M, Brevik EC (2018) Soil ecosystem services, sustainability, valuation and management. Curr Opin Environ Sci Health 5:7–13. https://doi.org/10.1016/j.coesh.2017.12.003
  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365. https://doi.org/10.1016/j.envint.2019.01.067
  • Ramola GC, Sahu L, Rathod D, Kukreti A (2023) Soil degradation and deterioration: causes, effects and case studies. In: Uniyal A, Sharma I, Tiwari I (eds) Soil restoration: assessment and reclamation, pp 107–123. ISBN: 978-93-94380-21-9
  • Raza T, Qadir MF, Khan KS, Eash NS, Yousuf M, Chatterjee S, Manzoor R, Rehman SU, Oetting JN (2023) Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. J Environ Manag 344:118529. https://doi.org/10.1016/j.jenvman.2023.118529
  • Rodrigo-Comino J, López-Vicente M, Kumar V, Rodríguez-Seijo A, Valkó O, Rojas C, Reza Pourghasemi H, Salvati L, Bakr N, Vaudour E, Brevik EC, Radziemska M, Pulido M, Di Prima S, Dondini M, de Vries W, Santos ES, Mendonça-Santos ML, Yu Y, Panagos P (2020) Soil science challenges in a new era: a transdisciplinary overview of relevant topics. Air Soil Water Res 13:1–17. https://doi.org/10.1177/1178622120977491
  • Rodríguez-Seijo A, Soares C, Ribeiro S, Amil BF, Patinha C, Cachada A, Fidalgo F, Pereira R (2022) Nano-Fe2O3 as a tool to restore plant growth in contaminated soils—assessment of potentially toxic elements (bio)availability and redox homeostasis in Hordeum vulgare L. J Hazard Mater 425:127999. https://doi.org/10.1016/j.jhazmat.2021.127999
  • Roshan A, Biswas A (2023) Fire-induced geochemical changes in soil: implication for the element cycling. Sci Total Environ 868:161714. https://doi.org/10.1016/j.scitotenv.2023.161714
  • Ryde U (2016) QM/MM calculations on proteins. In: Voth GA (ed) Methods in enzymology. Academic Press, pp 119–158. https://doi.org/10.1016/bs.mie.2016.05.014
  • Santás-Miguel V, Arias-Estévez M, Rodríguez-Seijo A, Arenas-Lago D (2023) Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environ Pollut 334:122222. https://doi.org/10.1016/j.envpol.2023.122222
  • Shi T, Guo L, Chen Y, Wang W, Shi Z, Li Q, Guofen W (2018) Proximal and remote sensing techniques for mapping of soil contamination with heavy metals. Appl Spectrosc Rev 53:783. https://doi.org/10.1080/05704928.2018.1442346
  • UNEP (2022) https://www.unep.org/news-and-stories/press-release/number-wildfires-rise-50-2100-and-governments-are-not-prepared
  • Urionabarrenetxea E, Casás C, Garcia-Velasco N, Santos MJG, Tarazona JV, Soto M (2023) Environmental risk assessment of PPP application in European soils and potential ecosystem service losses considering impacts on non-target organisms. Ecotoxicol Environ Saf 266:115577. https://doi.org/10.1016/j.ecoenv.2023.115577
  • Vargas-Berrones K, Bernal-Jácome L, de León-Martínez LD, Flores-Ramírez R (2020) Emerging pollutants (EPs) in Latin América: a critical review of under-studied EPs, case of study-nonylphenol. Sci Total Environ 726:138493. https://doi.org/10.1016/j.scitotenv.2020.138493
  • Villaverde JJ, Sandín-España P, Alonso-Prados JL, Lamsabhi AM, Alcamí M (2018) Pesticide byproducts formation: theoretical study of the protonation of alloxydim degradation products. Comput Theor Chem 1143:9–19. https://doi.org/10.1016/j.comptc.2018.08.006
  • Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2020) Contributions of computer-based chemical modeling technologies on the risk assessment and the environmental fate study of (nano)pesticides. In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development: Volume 1: Air, water and energy resources. Springer, Singapore, pp 1–27. https://doi.org/10.1007/978-981-13-5889-0_1
  • Villaverde JJ, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P (2022) A study using QSAR/QSPR models focused on the possible occurrence and risk of alloxydim residues from chlorinated drinking water, according to the EU Regulation. Sci Total Environ 839:156000. https://doi.org/10.1016/j.scitotenv.2022.156000
  • Wang J, Zhen J, Weifang H, Chen S, Lizaga I, Zeraatpisheh M, Yang X (2023) Remote sensing of soil degradation: progress and perspective. Int Soil Water Conserv Res 11:429. https://doi.org/10.1016/j.iswcr.2023.03.002
  • Wang Y, Munir U, Huang Q (2023) Occurrence of per- and polyfluoroalkyl substances (PFAS) in soil: sources, fate, and remediation. Soil Environ Health 1(1):100004. https://doi.org/10.1016/j.seh.2023.100004
  • Yuan Z, Ali A, Ruíz-Benito P, Jucker T, Mori AS, Wnag S, Zhang X, Hao Z, Wang X, Loreau M (2020) Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environment gradient. J Ecol 108:2012–2024. https://doi.org/10.1111/1365-2745.13378
  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146. https://doi.org/10.1021/es401288x
  • Zheng X, Chen S, Gao L, Liu Y, Shen F, Liu H (2020) Experimental and theoretical study of kinetic and mechanism of hydroxyl radical-mediated degradation of sulfamethazine. Environ Sci Pollut Res 27(32):40504–40511. https://doi.org/10.1007/s11356-020-10072-z